nlp转指令 nlp encoder decoder Attention原理 目前大多数的注意力模型都是依附在 Encoder-Decoder 框架下,但并不是只能运用在该模型中,attention机制作为一种思想可以和多种模型进行结合,其本身不依赖于任何一种框架。Encoder-Decoder 框架是深度学习中非常常见的一个模型框架,例如在 Image Caption 的应用中 Encoder-De...
Encoder-Decoder 模型主要是 NLP 领域里的概念。它并不特值某种具体的算法,而是一类算法的统称。Encoder-Decoder 算是一个通用的框架,在这个框架下可以使用不同的算法来解决不同的任务。 Encoder-Decoder 这个框架很好的诠释了机器学习的核心思路:将现实问题转化为数学问题,通过求解数学问题,从而解决现实问题。 Encoder ...
Encoder-Decoder 是 NLP 领域里的一种模型框架。它被广泛用于机器翻译、语音识别等任务。本文将详细介绍 Encoder-Decoder、Seq2Seq 以及他们的升级方案Attention。 什么是 Encoder-Decoder ? Encoder-Decoder 模型主要是 NLP 领域里的概念。它并不特值某种具体的算法,而是一类算法的统称。Encoder-Decoder 算是一个通用...
右图为encoder-decoder,前k个输出token可以看到所有k个输入token,从k+1的输出token开始只能看到历史的输入token。例如y_1能看到x_1 \sim x_3输入(y_3也可以),而y_4开始只能看到x_1 \sim x_4输入 PS: 这里为了方便理解,encoder-decoder简化使用causal with prefix示意,具体详见encoder-decoder章节 这三种结构...
前言 最基础的seq2seq模型包含了三个部分,即encoder、decoder以及连接两者的中间状态向量,encoder通过学习输入,将其编码成一个固定大小的状态向量s,继而将s传给decoder,decoder再通过对状态向量s的学习来进行输出。 图中每个box代表一个rnn单元,通常是lstm
Encoder-Decoder和 Seq2SeqEncoder-Decoder是NLP 领域里的一种模型框架。它被广泛用于机器翻译、语音识别等任务。 本文将详细介绍...,而是一类算法的统称。Encoder-Decoder算是一个通用的框架,在这个框架下可以使用不同的算法来解决不同的任务。Encoder-Decoder这个框架很好的诠释了机器学习的核心思路: 将 ...
语音识别也有很强的序列特征,比较适合 Encoder-Decoder 模型。 Google 发表的使用Seq2Seq做语音识别的论文《A Comparison of Sequence-to-Sequence Models for Speech Recognition》 图像描述生成(图片 - 文本) 通俗的讲就是「看图说话」,机器提取图片特征,然后用文字表达出来。这个应用是计算机视觉和 NLP 的结合。
人工智能-机器学习-深度学习-自然语言处理(NLP)-生成模型:Seq2Seq模型(Encoder-Decoder框架、Attention机制),程序员大本营,技术文章内容聚合第一站。
Seq2Seq模型有时可以包含自编码和自回归模型。Seq2Seq模型的decoder通常是自回归的,它根据之前的所有token,一次生成一个token的输出序列。 Seq2Seq的encoder部分可以看作类似自编码器,因为它将输入压缩成密集表示,但是与自编码器LM不同的是,seq2seq的encoder目标不是重建输入,而是为生成的输出序列(通常是不同domain...
我这里还强调一件事,在目前的CV里面Decoder的部分可能是被忽略了,大家都在关注Encoder部分。其实Transformer是个完整的Encoder-Decoder架构,特别在Decoder上面,它有cross-attention会使得它这个模型相当的灵活。 回到NLP,在NLP里面原来有非常多的范式,我把它归结为7类,当然还有一些可能这里覆盖不到。比如最简单的一类是分...