然后利用主成分分析方法[21(] principal component analysis,PCA)筛选出影响光伏输出功率的关键因子,降低模型输入参数的维度,消除由 EMD分解得到的不同波动序列的冗余性和相关性。最后,通过 LSTM 神经网络完成对多变量时间序列和光伏功率序列之间的动态时间建模,构建预测模型,最终实现对光伏输出功率的预测。与传统的 BP ...
主成分分析(PCA): PCA是一种降维技术,用于在保留数据集中大部分变异性的同时减少数据的维度。它通过正交变换将可能相关的变量转换为一组线性不相关的变量,这些不相关变量称为主成分。PCA可以提取数据中最重要的特征,减少模型的复杂度,并且有助于去除噪声。 长短期记忆网络(LSTM): LSTM是一种特殊的循环神经网络(RNN...
然后利用主成分分析方法[21(] principal component analysis,PCA)筛选出影响光伏输出功率的关键因子,降低模型输入参数的维度,消除由 EMD分解得到的不同波动序列的冗余性和相关性。最后,通过 LSTM 神经网络完成对多变量时间序列和光伏功率序列之间的动态时间建模,构建预测模型,最终实现对光伏输出功率的预测。与传统的 BP ...
这些IMF反映了不同时间尺度上的光伏功率变化规律。 然后,我们将对IMF进行主成分分析(PCA),以降维并提取最具代表性的特征。PCA可以帮助我们减少数据的维度,去除噪音,提高模型的泛化能力。 接着,我们将使用长短期记忆网络(LSTM)来构建预测模型。LSTM是一种能够捕捉时间序列数据长期依赖关系的循环神经网络,适合处理具有时...
基于EMD-PCA-LSTM的光伏功率预测模型的优点是:1. EMD方法能够将复杂的信号分解成多个局部频率成分,从而更好地捕捉其非线性特征;2. PCA降维可以减少数据的维度,提高训练效率和模型精度;3. LSTM网络具有记忆功能,能够较好地处理时间序列数据,对于光伏功率预测的长期依赖关系有较好的表现。而该模型的...
然后,我们将对IMF进行主成分分析(PCA),以降维并提取最具代表性的特征。PCA可以帮助我们减少数据的维度,去除噪音,提高模型的泛化能力。 接着,我们将使用长短期记忆网络(LSTM)来构建预测模型。LSTM是一种能够捕捉时间序列数据长期依赖关系的循环神经网络,适合处理具有时间特性的光伏功率数据。
基于EMD-PCA-LSTM的微电网负荷预测仿真软件是由湘潭大学著作的软件著作,该软件著作登记号为:2023SR0774621,属于分类,想要查询更多关于基于EMD-PCA-LSTM的微电网负荷预测仿真软件著作的著作权信息就到天眼查官网!
本发明公开了一种基于EMDPCALSTM的多变量输入光伏功率预测方法,利用经验模态分解方法将5种环境序列进行分解,得到不同时间尺度下的本征模态分解和剩余分量,将环境序列分解为各种不同的波动序列;利用主成分分析方法筛选出影响光伏输出功率的关键因子,降低模型输入参数的维度,消除由EMD分解得到的不同波动序列的冗余性和相关...
1.一种基于EMD-PCA-LSTM的多变量输入光伏功率预测方法,其特征在于, 步骤一:获取光伏电站实际生产中逆变器下的列阵光伏功率的实测功率时间序列数据,以及光伏阵区对应的环境检测仪采集的太阳辐照度、相对湿度、空气温度、组件温度、大气压力5种环境序列数据,组成光伏功率预测的实测样本数据集; 步骤二:对光伏功率预测的实...
和 PCA 主成分分析一样,SVD 其实也是使用待定系数法对任意形状矩阵分解以后的矩阵乘法因子做的推断。 PCA 主成分分析是对协方差矩阵进行特征值分解,待分解的矩阵是方阵,SVD 也用到了类似的过程,在结论上,SVD 给出了一个更好的结果,即对任意形状的矩阵都可以进行矩阵分解... ...