这块从论文来看做的比较早的是阿里的一些工作,包括阿里妈妈团队在2017-2018做的基于dnn的Deep interest network-DIN,是用dnn里面的pooling,将用户的历史行为做了一些建模。这样可以把用户的历史兴趣体现在模型中,从而得到更好的预测效果。2019年,阿里妈妈团队又在DIN的基础上增加了一个RNN模块,推出DIEN模型。DIN只是把...
[7]Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E Dahl. Measuring the effects of data parallelism on neural network training. arXiv preprint arXiv:1811.03600, 2018. [8]Giovanni Di Gennaro, Amedeo Buonanno, and Francesco AN Palmieri. Con...
大Embedding模型训练(Distributed Training) 总结和展望 – 01 CTR预测模型(CTR Models) 1. 推荐模型的发展 首先简要介绍下推荐模型的发展。以06年为起点,在06年时,更多的是以协同过滤(Collaborative Filtering)的方法来做推荐,还包括最近邻方法(Nearest neighbor),矩阵分解(Matrix factorization - MF)的方法,以及...
这块从论文来看做的比较早的是阿里的一些工作,包括阿里妈妈团队在2017-2018做的基于dnn的Deep interest network-DIN,是用dnn里面的pooling,将用户的历史行为做了一些建模。这样可以把用户的历史兴趣体现在模型中,从而得到更好的预测效果。2019年,阿里妈妈团队又在DIN的基础上增加了一个RNN模块,推出DIEN模型。DIN只是把...
这块从论文来看做的比较早的是阿里的一些工作,包括阿里妈妈团队在2017-2018做的基于dnn的Deep interest network-DIN,是用dnn里面的pooling,将用户的历史行为做了一些建模。这样可以把用户的历史兴趣体现在模型中,从而得到更好的预测效果。2019年,阿里妈妈团队又在DIN的基础上增加了一个RNN模块,推出DIEN模型。DIN只是把...
[7]Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E Dahl. Measuring the effects of data parallelism on neural network training. arXiv preprint arXiv:1811.03600, 2018. [8]Giovanni Di Gennaro, Amedeo Buonanno, and Francesco AN Palmieri. Con...
[7]Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E Dahl. Measuring the effects of data parallelism on neural network training. arXiv preprint arXiv:1811.03600, 2018. [8]Giovanni Di Gennaro, Amedeo Buonanno, and Francesco AN Palmieri. Con...
将一个实例(instance)从复杂的空间嵌入(投射)到相对简单的空间,以便对原始实例进行理解,或者在相对简单的空间中进行后续操作。 -- chrisyi《Network embedding 概述》 我个人比较倾向于 Tensorflow 社区给出的定义,即Embedding是离散实例连续化的映射。如下图所示,可以将离散型词 embedding 成一个四维的连续稠密向量;...
• The majority works focus on designing network architectures in FI module to better capture explicit or implicit feature interactions. • The feature embedding, especially for numerical features, has been overlooked. | 连续值Embedding :背景 Suppose a dataset for training CTR models consists of ...
本文提出一种方法,称为:lifts,将 thevectorof pairwise distances 转换成 thematrixof pairwise distance. 然后在 lifts problem 上设计了一个新的结构损失目标。结果表明,在 GoogleLeNet network 上取得了比其他方法都要好的结果。 然后作者简单的回顾了一下关于判别性训练网络(discriminatively training networks)来...