(input_ids,attention_mask,token_type_ids,labels) in enumerate(loader): out = model(input_ids=input_ids, attention_mask = attention_mask, token_type_ids=token_type_ids) loss = criterion(out,labels) loss
链接:https://huggingface.co/aspire/acge_text_embedding 模型API调用:https://www.textin.com/market/detail/acge_text_embedding 更多福利、大模型应用技术学习材料,关注合合君即刻领
(args.model_name_or_path).half() encoder.encode = functools.partial(encoder.encode, normalize_embeddings=True) encoder.max_seq_length = int(args.max_len) task_names = [t.description["name"] for t in MTEB(task_types=args.task_type, task_langs=['zh', 'zh-CN']).tasks] TASKS_WITH_...
image.png 需要注意的是这里的模型是gated Model,需要登录huggingface的账号,参照hf-mirror官网的方式进行下载。主要是需要添加--token参数,在huggingface官网这里获取,指令如下: huggingface-clidownload--tokenhf_***--resume-download--local-dir-use-symlinksFalsemeta-llama/Llama-2-7b-hf--local-dirLlama-2-7b-...
fromsentence_transformersimportSentenceTransformer# 若无法访问huggingface,可以在先离线下载模型到本地model...
inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for...
# 若无法访问huggingface,可以在先离线下载模型到本地 model=SentenceTransformer('acge_text_embedding')source_text=["家常菜烹饪指南"]target_text=["西红柿炒鸡蛋做法","农家小炒肉做法","上海本帮菜肴传统烹饪技艺","汽车维修指南——检测、维修、拆装与保养"]embs1=model.encode(source_text,normalize_embedding...
I am trying to load embeddings like this.I changed the code to reflect the current version change in LlamaIndex but it shows up an attribute error. from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings Settings.embed_model = Hug...
(6)huggingface上那么多bert架构的embedding框架,那款合适了? https://huggingface.co/spaces/mteb/leaderboard 这里有个排名供参考借鉴: 一般情况下,选择模型的评价指标: Max Tokens:query和passage的长度 Embedding Dimensions:语义是否丰富,是包罗万象,还是又精又专 ...
BGE:智源研究院突破性中英文语义Embedding向量模型 引言 智源研究院发布了一款开源的中英文语义向量模型BGE(BAAI General Embedding),在中英文语义检索精度与整体语义表征能力方面全面超越了OpenAI、Meta等同类模型。BGE模型的发布,标志着语义向量模型(Embedding Model)在搜索、推荐、数据挖掘等领域的应用迈入了一个新...