EMA(Efficient Multi-Scale Attention)模块是一种新颖的高效多尺度注意力机制,旨在提高计算机视觉任务中的特征表示效果。 EMA注意力模块通过结合通道和空间信息、采用多尺度并行子网络结构以及优化坐标注意力机制,实现了更加高效和有效的特征表示,为计算机视觉任务的性能提升提供了重要的技术支持。 通道和空间注意力的结合:...
简介:【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力.EMA(Efficient Multi-Scale Attention)模块是一种高效多尺度注意力机制,旨在提高计算机视觉任务中的特征表示效果。该模块通过结合通道和空间信息、采用多尺度并行子网络结构以及优化坐标注意力机制,实现了更高效...
EMA(Efficient Multi-Scale Attention)模块是一种新颖的高效多尺度注意力机制,旨在提高计算机视觉任务中的特征表示效果。 EMA注意力模块通过结合通道和空间信息、采用多尺度并行子网络结构以及优化坐标注意力机制,实现了更加高效和有效的特征表示,为计算机视觉任务的性能提升提供了重要的技术支持。 通道和空间注意力的结合:E...
efficient multi-scale attention (ema) 优点 Efficient Multi-scale Attention (EMA) 是一种在计算机视觉和深度学习中广泛应用的注意力机制。它通过将多尺度特征进行融合,以增强模型对图像中不同尺度信息的捕捉能力。EMA 的主要优点包括: 多尺度特征融合:EMA 可以将来自不同尺度的特征进行融合,从而增强模型对图像中不...
提出了一种新的无需降维的高效多尺度注意力(efficient multi-scale attention, EMA)。请注意,这里只有两个卷积核将分别放置在并行子网络中。其中一个并行子网络是一个1x1卷积核,以与CA相同的方式处理,另一个是一个3x3卷积核。为了证明所提出的EMA的通用性,详细的实验在第4节中给出,包括在CIFAR-100、ImageNet-...
提出了一种新的无需降维的高效多尺度注意力(efficient multi-scale attention, EMA)。请注意,这里只有两个卷积核将分别放置在并行子网络中。其中一个并行子网络是一个1x1卷积核,以与CA相同的方式处理,另一个是一个3x3卷积核。为了证明所提出的EMA的通用性,详细的实验在第4节中给出,包括在CIFAR-100、ImageNet-...
与形成的有限感受野的渐进行为相反,并行使用 3×3 和 1×1 卷积在中间特征图中利用了更多的上下文信息。 3、实验 3.1、图像分类 3.2、目标检测 3.3、Heatmap可视化对比 4、参考 [1].Efficient Multi-Scale Attention Module with Cross-Spatial Learning....
论文《Efficient Multi-Scale Attention Module with Cross-Spatial Learning》 1、作用 论文提出了一种新颖的高效多尺度注意力(EMA)模块,专注于在保留每个通道信息的同时降低计算成本。EMA模块通过将部分通道重塑到批量维度并将通道维度分组为多个子特征,使得空间语义特征在每个特征组内得到良好分布。该模块的设计旨在提高...
Implementation Code for the ICCASSP 2023 paper " Efficient Multi-Scale Attention Module with Cross-Spatial Learning" and is available at: https://arxiv.org/abs/2305.13563v2 - YOLOonMe/EMA-attention-module
正如作者所提到的,作者认为与减少模型容量相比,性能改进 justification了额外的FLOPs,尤其是考虑到与模型容量相比,优化机会更多。向前看,探索进一步减小FLOPs对墙时钟时间的影响的技术,例如稀疏化亲和矩阵,将是非常有趣的。 参考 [1].EMA-Net: Efficient Multitask Affinity Learning for Dense Scene Predictions....