【GiantPandaCV导语】本文介绍的是Efficient Neural Architecture Search方法,主要是为了解决之前NAS中无法完成权重重用的问题,首次提出了参数共享Parameter Sharing的方法来训练网络,要比原先标准的NAS方法降低了1000倍的计算代价。从一个大的计算图中挑选出最优的子图就是ENAS的核心思想,而子图之间都是共享权重的。 1. ...
【GiantPandaCV导语】本文介绍的是Efficient Neural Architecture Search方法,主要是为了解决之前NAS中无法完成权重重用的问题,首次提出了参数共享Parameter Sharing的方法来训练网络,要比原先标准的NAS方法降低了1000倍的计算代价。从一个大的计算图中挑选出最优的子图就是ENAS的核心思想,而子图之间都是共享权重的。 1. ...
Efficient search is a core issue in Neural Architecture Search (NAS). It is difficult for conventional NAS algorithms to directly search the architectures on large-scale tasks like ImageNet. In general, the cost of GPU hours for NAS grows with regard to training dataset size and candidate set...
ENAS能在Penn Treebank和CIFAR-10两个数据集上得到和NAS差不多的效果,而且训练时间大幅缩短,效率大大提升。
【GiantPandaCV导语】本文介绍的是Efficient Neural Architecture Search方法,主要是为了解决之前NAS中无法完成权重重用的问题,首次提出了参数共享Parameter Sharing的方法来训练网络,要比原先标准的NAS方法降低了1000倍的计算代价。从一个大的计算图中挑选出最优的子图就是ENAS的核心思想,而子图之间都是共享权重的。
Summary 本文提出超越神经架构搜索(NAS)的高效神经架构搜索(ENAS),这是一种经济的自动化模型设计方法,通过强制所有子模型共享权重从而提升了NAS的效率,克服了NAS算力成本巨大且耗时的缺陷,GPU运算时间缩短了1000倍以上。在Penn Treebank数据集上,ENAS实现了55.8
Efficient Neural Architecture Search via Parameter Sharingarxiv.org/abs/1802.03268 TL;DR ENAS是NAS领域的经典文章,大大加快了基于RL的NAS的计算速度。作者是来自CMU的Hieu Pham、Stanford的Melody Y. Guan以及提出NAS的Barret Zoph所在的Google Brain团队。 作者发现NAS计算缓慢的原因在于大量采样不同子模型进行训...
通过分别使用网络态射类型II或IV,添加从第i层到第j层的跳跃连接(通过 concatenation 或 addition - 均匀采样)。层i和j也都是均匀地采样。 5. 实验与结果 具体的实验结果可查阅原论文Simple And Efficient Architecture Search For Neural Networks。MARSGGBO♥原创2018-7-27...
We propose Efficient Neural Architecture Search (ENAS), a fast and inexpensive approach for automatic model design. In ENAS, a controller learns to discover neural network architectures by searching for an optimal subgraph within a large computational graph. The controller is trained with policy gradie...
A micro architecture can be specified by two sequences of cells concatenated after each other, as shown in our script./scripts/cifar10_micro_final.sh If you happen to use our work, please consider citing our paper. @inproceedings{enas, title = {Efficient Neural Architecture Search via Paramete...