【ECAPA_TDNN 下 】代码和论文细节分析 https://blog.csdn.net/qq_32766309/article/details/124243147?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522169355260816800225596318%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=169355260816800225596318&biz_id=0&u...
本项目使用了EcapaTdnn模型实现的声纹识别,不排除以后会支持更多模型,同时本项目也支持了多种数据预处理方法,损失函数参考了人脸识别项目的做法PaddlePaddle-MobileFaceNets ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余...
ECAPA-TDNN由比利时哥特大学Desplanques等人于2020年提出,通过引入SE (squeeze-excitation)模块以及通道注意机制,该方案在国际声纹识别比赛(VoxSRC2020)中取得了第一名的成绩。百度旗下PaddleSpeech发布的开源声纹识别系统中就利用了ECAPA-TDNN提取声纹特征,识别等错误率(EER)低至0.95%。 Baseline 两种基于DNN的说话人...
本项目使用了EcapaTdnn模型实现的声纹识别,不排除以后会支持更多模型,同时本项目也支持了多种数据预处理方法,损失函数参考了人脸识别项目的做法PaddlePaddle-MobileFaceNets ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余...
本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法。
本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,不排除以后会支持更多模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对应项目中的AAMLoss,对特征向量和权重...
项目提供了多种声音分类模型,如EcapaTdnn、PANNS、ResNetSE、CAMPPlus和ERes2Net,以支持不同的应用场景。此外,项目还提供了常用的Urbansound8K数据集测试报告和一些方言数据集的下载和使用例子。用户可以根据自己的需求选择适合的模型和数据集,以实现更准确的声音分类。项目的应用场景广泛,可以用于室外的环境监测、野生...
支持模型:EcapaTdnn、PANNS、TDNN、Res2Net、ResNetSE、CAMPPlus、ERes2Net 支持池化层:AttentiveStatsPool(ASP)、SelfAttentivePooling(SAP)、TemporalStatisticsPooling(TSP)、TemporalAveragePooling(TAP) 支持预处理方法:MelSpectrogram、Spectrogram、MFCC、Fbank ...
本项目是基于Pytorch的声音分类项目,旨在实现对各种环境声音、动物叫声和语种的识别。项目提供了多种声音分类模型,如EcapaTdnn、PANNS、ResNetSE、CAMPPlus和ERes2Net,以支持不同的应用场景。 PyTorch 声音分类 EcapaTdnn panns Python等 2 种语言 Apache-2.0 ...