通解为:e^y-1=Cxe^y xdy=(e^y-1)dx dy/(e^y-1)=dx/x [e^y/(e^y-1)-1]dy=dx/x ln|e^y-1|-y=ln|x|+C1 两边取指数函数 exp{ln|e^y-1|-y}=Cx (e^y-1)/e^y=Cx e^y-1=Cxe^y
首先对x积分得到 ∫e^(x/y) dx =y *∫ e^(x/y) d(x/y)=y *e^(x/y)代入x的上下限,再对y进行积分即可
解析 x_vax)=[-√(1.0) [-x,a=*2*π,a] x/(t-va)=va [x_2/([-/,x_2∋][u]= x1-([-x,a)∪]=x (T-va)u-xu|=- xu=(T-va)u+A- (Tva)u+xu=(T-va)u+A- [1+xpx/[i]=x,pI([-/,x,0)] x/xp=(T-Ava)//pva+Ap- x/xp=(t-Ava)/Ap[va+(t-Ava)-] x/xp...
求xdy+dx=eydx的通解 相关知识点: 试题来源: 解析 xdy+dx=e^y dx-|||-xdy=(ey-1)dx-|||-dy/(ey-1)=dx/x-|||-[-(ey-1)+e^y]dy/(e^y-1)=dx/x-|||--dy+e^ydy/(e^y-1)=dx/x-|||-[-1+(ey/ey-1)]dy=J1/x dx+c1-|||--y+In(ey-1)=Inx+In(e^c1)-|||-...
In addition to restricting the passage of gases, vapors or flames from one portion of the electrical installation to another, EYDX sealing fittings prevent accumulation of condensate above the seal. They are installed in vertical conduit runs and at low points in conduit systems. 1/2” EYDX11B...
解:dy=(e^y-1)dx dy/(e^y-1)=dx/x [e^y/(e^y-1)-1]dy=dx/x ln|e^y-1|-y=ln|x|+C1 exp{ln|e^y-1|-y}=Cx (e^y-1)/e^y=Cx 通解是:e^y-1=Cxe^y
对x求导为y*e^(xy)对y求导为x*e^(xy)对x,y求偏导为e^(xy)+xy*e^(xy)
答案 z'x=e^(xy)*yz'y=e^(xy)*xdz=z'xdx+z'ydy=e^(xy)*ydx+e^(xy)*xdy 结果二 题目 设z=e xy ,则dz=___. 答案 由z=e xy 得 z x =y e xy , z y =x e xy ∴dz=ye xy dx+xe xy dy 相关推荐 1 设z=e^xy,则dz=? 2 设z=e xy ,则dz=___. 反馈 收藏 ...
[e^y/(e^y-1)-1]dy=dx/xln|e^y-1|-y=ln|x|+C1两边取指数函数exp{ln|e^y-1|-y}=Cx(e^y-1)/e^y=Cxe^y-1=Cxe^y就是你的答案 解析看不懂?免费查看同类题视频解析查看解答 更多答案(1) 相似问题 求方程xdy+dx=e^y dx的通解 求xdy/dx+1=e^y通解 求微分方程Xdy-Ydx=X/lnx*dx...
答案 原方程变为 xdy=(e^y-1)dx分离变量得(dy)/(e^y-1)=(dx)/x等式两边积分,得er-(e'-1)ey-1故方程通解为 ln(e^y-1)-y=lnx+C.相关推荐 1求下列可分离变量微分方程的通解:xdy+dx=exdx; 2求下列可分离变量微分方程的通解:xdy+dx=e^ydx ; 反馈...