从0到正无穷对e的-x^2次方积分解答过程如下: 在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F′ =f。 不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。 不定积分的求解方法: 1、积分公式法 直接利用积分公式求出不定积分。 2、换元积分法 ...
∫e^(-x^2)dx = (√π/2)erf(x) + C,其中C是积分常数。∫e^(-x^2)dx = (√π/2)erf(x) +
如果积分限是-∞到∞,∫e^(-x^2)dx =√π 。若积分限0到∞,根据偶函数的性质可知,∫e^(-x^2)dx =√π/2。不定积分的公式:1、∫ a dx = ax + C,a和C都是常数 2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1 3、∫ 1/x dx = ln|...
带入积分公式,得到:∫e^-x * e^-x dx = -e^-2x/2 + C其中,C 是一个常数。将此结果代回原式中,得到:∫(e^-x)^2 dx = -(e^-x)^2 - 2e^-2x/2 + C经过简化,我们得到了 e 的负 x 的 2 次方的不定积分。综上所述,e 的负 x 的 2 次方的不定积分是 -(e^-x)...
(下面的两种方法是在不知道积分结果,但是知道一些其他结论时,用这些已学到的结论反推结果) 第二种:利用标准正态分布的公式 已知对于标准正态分布有: ∫0+∞φ(x)dx=∫0+∞12πe−x22dx=12 简单移项就可得: ∫0+∞e−(x2)2d(x2)=π2 第三种:利用 Gamma 函数 把被积公式凑成 Gamma 函数的...
立即续费VIP 会员中心 VIP福利社 VIP免费专区 VIP专属特权 客户端 登录 百度文库 期刊文献 图书e的-x^2次方的不定积分e的-x^2次方的不定积分 ∫e^(-x^2)不定积分是-e^(-x^2/2)/x+C。©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销 ...
结果如下图:解题过程如下(因有专有公式,故只能截图):
=π ∵ ∫∫e^(-x^2-y^2) dxdy =(∫e^(-x^2)dx)*(∫e^(-y^2)dy)=(∫e^(-x^2)dx)^2 ∴∫e^(-x^2)dx=√π 不定积分的意义:一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。若在有限区间[a,b]...
从0到正无穷对e的-x^2次方积分是(√π)/2。f(x)在(-∞,+∞)上的积分为1,且关于y轴对称,即:(0,+∞)上的积分为1/2,那么(1/√π)e^(-x^2)在(0,+∞)上的积分为1/2。由于(1/√π)是常数,则积分结果就是(√π)/2。不定积分的求解方法 1、积分公式法。直接利用...
∫e^(-x^2)不定积分是-e^(-x^2/2)/x+C。令u=(-x^2/2);=-xdx;dx=-/xv=1dv=0∫e^(-x^2/2)dx=-∫e^u/x-∫e^udv=-e^ux=-e^(-x^2/2)/x+C所兄胡以∫e^(-x^2)不定积分是-e^(-x^2/2)/x+C。分部积分法两个原则1、交换位置之后的积分容易求出。经验顺序:对,反,幂宴...