从0到正无穷对e的-x^2次方积分解答过程如下: 在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F′ =f。 不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。 不定积分的求解方法: 1、积分公式法 直接利用积分公式求出不定积分。 2、换元积分法 ...
从0到正无穷对e的-x^2次方积分是(√π)/2。 f(x)在(-∞,+∞)上的积分为1,且关于y轴对称,即:(0,+∞)上的积分为1/2,那么(1/√π)e^(-x^2)在(0,+∞)上的积分为1/2。由于(1/√π)是常数,则积分结果就是(√π)/2。 不定积分的求解方法 1、积分公式法。直接利用积分公式求出不定积分...
立即续费VIP 会员中心 VIP福利社 VIP免费专区 VIP专属特权 客户端 登录 百度文库 期刊文献 图书e的-x^2次方的不定积分e的-x^2次方的不定积分 ∫e^(-x^2)不定积分是-e^(-x^2/2)/x+C。©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销 ...
=∫∫e^(-r^2) rdrdα =(∫e^(-r^2) rdr)*(∫dα)=π*∫e^(-r^2) dr^2 =π*(1-e^(-r^2) |r->+∝ =π ∵ ∫∫e^(-x^2-y^2) dxdy =(∫e^(-x^2)dx)*(∫e^(-y^2)dy)=(∫e^(-x^2)dx)^2 ∴∫e^(-x^2)dx=√π 不定积分的意义:一个函数,可...
如果积分限是-∞到∞,∫e^(-x^2)dx =√π 。若积分限0到∞,根据偶函数的性质可知,∫e^(-x^2)dx =√π/2。不定积分的公式:1、∫ a dx = ax + C,a和C都是常数 2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1 3、∫ 1/x dx = ln|...
∫e^(-x^2)dx=(-1/2)∫de^(-x^2)/x=(-1/2)e^(-x^2)/x -(1/2)∫e^(-x^2)dx/x^2 =(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3+(1/4)∫e^(-x^2)d(1/x^3) =(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3-(1/8)e^(-x^2)/x^4+(1/8)∫e^(-x^2...
接着,我们需要求出 e 的负 x 的 2 次方的不定积分。根据积分的定义,可以将不定积分转化为定积分。我们可以将 e 的负 x 的 2 次方看作一个函数 f(x),则其积分可以写成:∫(e^-x)^2 dx要求这个积分,我们可以采用分部积分法。具体来说,我们选择 u = e^-x,dv = e^-x dx,则 ...
(下面的两种方法是在不知道积分结果,但是知道一些其他结论时,用这些已学到的结论反推结果) 第二种:利用标准正态分布的公式 已知对于标准正态分布有: ∫0+∞φ(x)dx=∫0+∞12πe−x22dx=12 简单移项就可得: ∫0+∞e−(x2)2d(x2)=π2 第三种:利用 Gamma 函数 把被积公式凑成 Gamma 函数的...
结果如下图:解题过程如下(因有专有公式,故只能截图):
e的负x平方的原函数不是初等函数,不定积分解不出来;数轴上的定积分是根号下π。I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy 转化成极坐标:=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1/2)e^(-p^2)|(0-+无穷)]=2π*1/2 =π 积分...