基于temporally varying neural radiance fileds的最先进方法(又名Dynamicn NeRFs)在此任务中显示出令人印象深刻的结果。然而,对于具有复杂对象动作和非受控相机轨迹的长视频,这些方法可能会产生模糊或不准确的渲染,阻碍了它们在实际应用中的使用。作者提出了一种新方法,该方法不是在 MLP 的权重内对整个动态场景进行...
Google开发了一种新的动态图片渲染方法DynIBaR(Neural Dynamic Image-Based Rendering),只要使用单一视频,就可以生成复杂且动态的场景,并以真实自由摄影机视点渲染出新画面,实现诸如子弹时间、摄影防手震、慢动作甚至是散景(Bokeh)等特效。由于NeRF(Neural Radiance Fields)技术的发展,开发者能够重建和渲染静态3D...
Teams:GoogleResearch 2Cornell Tech, Cornell University Writers: Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, Noah Snavely PDF:DynIBaR: Neural Dynamic Image-Based Rendering Abstract We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene...
DynIBaR: Neural Dynamic Image-Based Rendering, CVPR 2023 Zhengqi Li1,Qianqian Wang1,2,Forrester Cole1,Richard Tucker1,Noah Snavely1 1Google Research,2Cornell Tech, Cornell University Instructions for installing dependencies Python Environment