动态时间规整(DTW,Dynamic time warping,动态时间归整/规整/弯曲)是一种衡量两个序列之间最佳排列的算法。线性序列数据如时间序列、音频、视频都可以用这种方法进行分析。DTW通过局部拉伸和压缩,找出两个数字序列数据的最佳匹配,同时也可以计算这些序列之间的距离。 DTW是干什么的? 动态时间规整算法,故名思议,就是把两...
这条路径可以通过动态规划(dynamic programming)算法得到。 计算方法: 这次主要是用语音识别课程老师上课的一个题目来理解DTW算法。 首先还是介绍下DTW的思想:假设现在有一个标准的参考模板R,是一个M维的向量,即R={R(1),R(2),……,R(m),……,R(M)},每个分量可以是一个数或者是一个更小的向量。现在有一...
DTW(Dynamic Time Warping,动态时间归整)算法,该算法基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,是语音识别中出现较早、较为经典的一种算法。用于孤立词识别,DTW算法与HMM算法在训练阶段需要提供大量的语音数据,通过反复计算才能得到模型参数,而DTW算法的训练中几乎不需要额外的计算。所以在孤立词语音识...
动态时间规整(Dynamic Time Warping,DTW)是一种用于比较两个序列(如时间序列数据)的算法,它允许在保持序列整体形状的同时,对序列进行伸缩和变形。DTW的主要目的是找到两个序列之间的最优非线性映射,使得它们的距离(通常使用某种距离度量,如欧氏距离或曼哈顿距离)最小。 DTW的计算公式通常涉及到一个累积距离矩阵和一个...
动态时间规整(DTW,Dynamic time warping,动态时间归整/规整/弯曲)是一种衡量两个序列之间最佳排列的算法。线性序列数据如时间序列、音频、视频都可以用这种方法进行分析。DTW通过局部拉伸和压缩,找出两个数字序列数据的最佳匹配,同时也可以计算这些序列之间的距离。
Dynamic Time Warping(DTW)是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别、自然语言处里、股票配对交易领域来识别两段时间序列是否表示同一个单词、股票变动。 1. DTW方法原理 在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别领域表现为不同人的语速不同。而且同一个单词...
动态时间规整(DTW,Dynamic time warping,动态时间归整/规整/弯曲)是一种衡量两个序列之间最佳排列的算法。线性序列数据如时间序列、音频、视频都可以用这种方法进行分析。DTW通过局部拉伸和压缩,找出两个数字序列数据的最佳匹配,同时也可以计算这些序列之间的距离。
我们今天看一个常见的时间序列算法:动态时间规整 (Dynamic Time Warping, DTW)。DTW的目的在于对齐两个长度不同但内容相似的序列。语音处理中我们经常会遇到两个内容一样但是由于语速不同导致长度不同的数据,这会对数据处理造成麻烦,因此DTW在语音处理中也是非常实用的算法。 本文的一些图片取材于互联网,如果你觉得图...
Dynamic Time Warping(DTW)是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别领域来识别两段语音是否表示同一个单词。 1. DTW方法原理 在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别领域表现为不同人的语速不同。而且同一个单词内的不同音素的发音速度也不同,比如有的人...
动态时间规整(DTW,Dynamic time warping,动态时间归整/规整/弯曲)是一种衡量两个序列之间最佳排列的算法。线性序列数据如时间序列、音频、视频都可以用这种方法进行分析。DTW通过局部拉伸和压缩,找出两个数字序列数据的最佳匹配,同时也可以计算这些序列之间的距离。