Meduim Blog:Dynamic Programming in RL Meduim Blog:Disassembling Jack’s Car Rental Problem 1. 简介 动态编程(Dynamic Programming, DP) 是用于解决马尔可夫决策过程(Markov Decision Process, MDP) 的一种方法。DP 通过将复制的问题分解为一系列小问题,再通过不断的解决小问题得到解决方案。由于 MDP 的性质中包...
而planning可以看作RL的简单版本,planning已知环境模型,其它的都与RL一样。 1.Dynamic Programming programming在这里不是程序中编程的意思,而是数学中规划的意思,规划的意思可以看作是optimization。 dynamic是什么意思?就是问题是多步骤的 用DP解决的问题需要满足两个条件: bellman equation的定义: Richard Bellman ...
Dynamic Programming (DP) and Reinforcement Learning (RL) can be used to address problems from a variety of fields, including automatic control, artificial intelligence, operations research, and economy. Many problems in these fields are described by continuous variables, whereas DP and RL can find ...
在迭代过程中,因为policy iteration中是policy->value->policy,所以每个value function对应的policy都是有意义的,但是在value iteration迭代中,value function可能是没有意义的(不完整的) 异步更新,提高效率 三种值迭代方法 常规的值迭代,要遍历过所有s之后,才进行一次迭代,因此存在old、new两个v(s) in-place DP:用...
in-place DP:新值直接替换旧值,只存储一个v(s), 异步更新,提高效率 缺点:更新顺序影响收敛性 Prioritised sweeping:state的影响力排序 比较贝尔曼误差绝对值,大的更新,小的忽略 Real-time DP:遍历过的才更新 省去了agent 未遍历的状态s,对于稀疏任务效率提升极大...
Dynamic Programming (DP) and Reinforcement Learning (RL) can be used to address problems from a variety of fields, including automatic control, artificial intelligence, operations research, and economy. Many problems in these fields are described by continuous variables, whereas DP and RL can find ...
reward=0ifi==self.nrow-1:ifj==self.ncol-1:reward=1elifj>0:reward=-100foraction_indexinnp.arange(len(self.action_space)):next_i=max(0,min(self.nrow-1,i+self.action_space[action_index][0]))next_j=max(0,min(self.ncol-1,j+self.action_space[action_index][1]))next_state=next_...
Approximate Dynamic Programming (ADP)Approximate dynamic programming (ADP or RLADP) includes a wide variety of general methods to solve for optimal decision and control in the face of complexity, nonlinearity, stochasticity, and/or...doi:10.1007/978-1-4471-5102-9_100096-1Paul J. Werbos...
An application of the functional equation approach of dynamic programming to deterministic, stochastic, and adaptive control processes. R Bellman,R Kalaba 被引量: 7发表: 1959年 Reinforcement learning and adaptive dynamic programming for feedback control Living organisms learn by acting on their environme...
也算是理论奠基人之一了)的Dimitri Bertsekas,他所称之为Abstract Dynamic Programming Models。在回答...