为了对多元时间序列进行准确、稳健的预测,我们提出了一种双自注意网络(DSANet),用于在没有外生信息的情况下进行高效的多元时间序列预测。在DSANet中,我们首先将每个单变量时间序列独立地注入两个并行的卷积分量,分别称为全局时域卷积和局部时域卷积,从而对全局和局部时域模式的复杂混合进行建模。接下来,将每个卷积组件的...
We release the code of the DSANet (Dynamic Segment Aggregation Network). We introduce the DSA module to capture relationship among snippets for video-level representation learning. Equipped with DSA modules, the top-1 accuracy of I3D ResNet-50 is improved to 78.2% on Kinetics-400....
This branch is 2 commits behind c-yn/DSANet:main.Folders and files Latest commit Cannot retrieve latest commit at this time. History4 Commits Dehazing Desnowing .gitignore LICENSE README.md Repository files navigation README License Dual-domain strip attention for image restoration Yuning ...
专利摘要:本发明公开了一种基于非对称DSANet网络的烟码识别方法,涉及数字图像处理技术领域,具体包括步骤一:通过文本检测模型对烟码区域进行准确定位;步骤二:针对畸变烟码形态变化影响识别的问题,以增加样本字符级多样性为目的设计生成畸变样本的非线性局部增强方法;步骤三:基于模型对抑制背景干扰和实时性的需求,设计双态非...
摘要: Cognitive Computation - Many deaths are caused by heart disease. A phonocardiogram (PCG) reflects the general rule of heart movement, so the analysis of heart sound signals is particularly...关键词: PCG signal...
DSANet完全不需要递归,而是利用两个并行的卷积分量,即全局时域卷积和局部时域卷积,来捕获全局和局部时域模式的复杂混合。此外,DSANet还使用了一个自我关注模块来对多个系列之间的依赖关系进行建模。为了进一步提高鲁棒性,DSANet还集成了一个与非线性神经网络并行的传统自回归线性模型。对真实世界多变量时间序列数据的实验...
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting". - bighuang624/DSANet
Output Data flow-forecast chevron_right Loading... Outputmore_vert arrow_right folder flow-forecast Download notebook output navigate_nextminimize content_copyhelpCould not load files: Unexpected token '<', "<!doctype "... is not valid JSON...