如果我们的DataFrame有多级索引,我们可以使用level参数来指定在哪一级删除标签。 首先,我们创建一个有多级索引的DataFrame。 importpandasaspd data={'name':['Alice','Bob','Charlie','David','Eve'],'age':[25,32,18,21,35],'city':['New York','Los Angeles','San Francisco','Seattle','Austin']}...
布尔值,默认为False。如果为True,则在原DataFrame上进行操作,返回值为None。 2.示例 创建DataFrame数据: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 importnumpyasnpimportpandasaspd a=np.ones((11,10))foriinrange(len(a)):a[i,:i]=np.nan d=pd.DataFrame(data=a)print(d) 按行删除:存在空...
DataFrame.drop(labels=None,axis=0,index=None,columns=None, inplace=False) 参数说明: labels 就是要删除的行列的名字,用列表给定 axis 默认为0,指删除行,因此删除columns时要指定axis=1; index 直接指定要删除的行 columns 直接指定要删除的列 inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除...
Table 1 shows the output of the previous syntax: We have created some example data containing seven rows and three columns. Some of the rows in our data are duplicates.Example 1: Drop Duplicates from pandas DataFrameIn this example, I’ll explain how to delete duplicate observations in a ...
0 0 3 1 4 7 2 8 11#Drop rows by index>>>df.drop([0, 1])A B C D 2 8 9 10 11 以上这篇Python中pandas dataframe删除一行或一列:drop函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持亿速云。
pandas.DataFrame.drop()函数 在Pandas库中,DataFrame.drop() 用于移除DataFrame中的行或列。 df.drop(labels =None, axis =0, index =None, columns =None, level =None, inplace =False,errors ='raise') 参数: 1.labels:要删除的列或者行,如果要删除多个,传入列表...
Python的pandas的dataframe的drop方法删除行列 drop( 方法用于删除 DataFrame 中的行和列。它有三个主要的参数:labels、axis 和 inplace。下面将详细介绍这些参数以及如何正确使用 drop( 方法来删除行和列。 1.删除行: 要删除 DataFrame 中的行,可以使用 drop( 方法并将 axis 参数设置为 0 或 'index'。例如,...
drop()函数的用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 默认参数 axis=0,表示对行进行操作,如需对列进行操作需要更改默认参数为 axis=1, 默认参数 inplace=False,表示该删除操作不改变原数据,而是返回一个执行删除操作后的新 dataframe,如需直接在原数据上进行删除操作...
# drop columns from a dataframe # df.drop(columns=['Column_Name1','Column_Name2'], axis=1, inplace=True) import numpy as np df = pd.DataFrame(np.arange(15).reshape(3, 5), columns=['A', 'B', 'C', 'D', 'E']) print(df) # output # A B C D E # 0 0 1 2 3 4 ...
drop(index=5, errors='ignore') print(df_dropped) # 不会抛出错误,仍然输出原 DataFrame 应用场景 数据清理:去除无用的行或列,清理数据集。 特征选择:在建模前选择重要的特征,删除冗余特征。 数据转换:根据需求调整 DataFrame 的形状。 总结 pandas.DataFrame.drop() 是一个强大的工具,能够帮助用户灵活地管理...