DataFrame.drop(labels=None,axis=0,index=None,columns=None, inplace=False) 参数说明: labels 就是要删除的行列的名字,用列表给定 axis 默认为0,指删除行,因此删除columns时要指定axis=1; index 直接指定要删除的行 columns 直接指定要删除的列 inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除...
如果我们的DataFrame有多级索引,我们可以使用level参数来指定在哪一级删除标签。 首先,我们创建一个有多级索引的DataFrame。 importpandasaspd data={'name':['Alice','Bob','Charlie','David','Eve'],'age':[25,32,18,21,35],'city':['New York','Los Angeles','San Francisco','Seattle','Austin']}...
drop(index=5, errors='ignore') print(df_dropped) # 不会抛出错误,仍然输出原 DataFrame 应用场景 数据清理:去除无用的行或列,清理数据集。 特征选择:在建模前选择重要的特征,删除冗余特征。 数据转换:根据需求调整 DataFrame 的形状。 总结 pandas.DataFrame.drop() 是一个强大的工具,能够帮助用户灵活地管理...
在Pandas库中,DataFrame.drop() 用于移除DataFrame中的行或列。 df.drop(labels =None, axis =0, index =None, columns =None, level =None, inplace =False,errors ='raise') 参数: 1.labels:要删除的列或者行,如果要删除多个,传入列表 2.axis:轴的方向,0为行,1为列,默认为03.index:指定的一行或...
Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索) drop_duplicates函数 函数语法: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 data.drop_duplicates(subset=['a','b','b'],keep='first',inplace=True) 函数参数: subset:表示要进去重的列名,默认为 None。keep:有三个可选参数,...
用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 参数说明: labels 就是要删除的行列的名字,用列表给定 axis 默认为0,指删除行,因此删除columns时要指定axis=1; index 直接指定要删除的行 columns 直接指定要删除的列 inplace=False,默认该删除操作不改变原数据,而是返回一...
inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后的新dataframe; inplace=True,则会直接在原数据上进行删除操作,删除后无法返回。 因此,删除行列有两种方式: 1)labels=None,axis=0 的组合 2)index或columns直接指定要删除的行或列 ...
用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 在这里默认:axis=0,指删除index,因此删除columns时要指定axis=1; inp...
使用drop函数删除dataframe的某列或某行数据: drop(labels, axis=0, level=None, inplace=False, errors='raise')-- axis为0时表示删除行,axis为1时表示删除列 AI代码助手复制代码 常用参数如下: importpandasaspdimportnumpyasnpdata= {'Country':['China','US','Japan','EU','UK/Australia','UK/Netherl...
inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后的新dataframe; inplace=True,则会直接在原数据上进行删除操作,删除后无法返回。 因此,删除行列有两种方式: 1)labels=None,axis=0 的组合 2)index或columns直接指定要删除的行或列 ...