Pandas中的drop_duplicates()函数用于删除数据框中的重复行。这个函数非常有用,特别是在处理大型数据集时,可以帮助我们清理数据并确保数据的唯一性。drop_duplicates()函数有一个名为keep的参数,它决定了在删除重复行时应保留哪些重复行。keep参数有三个可选值: ‘first’:默认值。只保留第一次出现的重复行,删除
1、drop_duplicates() 输入任何参数,默认情况下根据所有列删除所有的重复行 df.drop_duplicates() 结果显示删除了最后一行,因为最后一行与第1行是完全一样的。 2、drop_duplicates(keep) 如果要指定删除第一个出现的重复值则输入参数keep='last' df.drop_duplicates(keep='last') 3、drop_duplicates(subset)...
drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False) 参数说明: subset:指定根据哪些列来判断重复值,默认为None,表示根据所有列来判断。如果指定了子集,则只要子集的这些列的数据都相同,就算重复值。 keep:设置保留重复值中的哪一个,可以设置的值有{‘first’, ‘last’, False},...
我们来到Python环境中,通过pandas的去重函数:drop_duplicates(),下面是官方的函数说明 解释一下各个参数:subset:表示要去重的列名,默认为 None。keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则表...
df=df.drop_duplicates(subset=['sex'],keep=False)print(df) 留第一次出现的【keep='first'】 保留第一次出现的,后面的都删除。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 importpandasaspdimportnumpyasnp df=pd.DataFrame({'name':['张丽华','李诗诗','王语嫣','赵飞燕','阮玲玉'],'sex...
pandas函数drop_duplicates用于去除DataFrame中的重复行。 语法: DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) 参数说明: subset:指定要考虑的列名或列名的列表。默认值为None,表示考虑所有列。 keep:指定保留哪个重复的行。可选值为'first'(保留第一个出现的重复行)、'last'(保留最后一个...
keep: 标记哪个重复数据,默认为‘first’。1.‘first’:标记重复数据第一次出现为True;‘last’:标记重复数据最后一次出现为True;False:标记所有重复数据为True。 importpandas as pd#构造数据(数据集来自pandas官网 df =pd.DataFrame({'brand': ['Yum Yum','Yum Yum','Indomie','Indomie','Indomie'],'style...
Pandasdrop_duplicates()方法有助于从PandasDataframe In Python中删除重复的内容。 df.drop_duplicates() 语法:DataFrame.drop_duplicates(subset=None, keep=’first’, inplace=False) 参数: subset。Subset接收一个列或列标签的列表。它的默认值是无。在传递列之后,它将只考虑它们的重复。
函数是 pandas 库中 DataFrame 和 Series 对象的一个非常实用的方法,用于删除重复的行或元素。下面是这个函数的一些主要参数及其说明: subset(默认为 None): 指定要考虑哪些列来判断重复。如果为 None,则考虑所有列。 示例:df.drop_duplicates(subset=['column1', 'column2']) keep(默认为 'first'): 决定在...
一、drop_duplicates函数用途 pandas中的drop_duplicates()函数可以通过SQL中关键字distinct的用法来理解,根据指定的字段对数据集进行去重处理。 二、drop_duplicates()函数的具体参数 * 用法: DataFrame.drop_duplicates(subset=None, keep=‘first’, inplace=False) ...