pd.drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False) 返回去除重复行的DataFrame subset: 列名,默认为所有列 设置根据列名来判断重复值,默认值为所有列元素相同时才判定为重复值。 keep: 'first', 'last', False,默认为first 决定保留的数据行。 first:保留第一个出现的重复数据...
我们来到Python环境中,通过pandas的去重函数:drop_duplicates(),下面是官方的函数说明 解释一下各个参数:subset:表示要去重的列名,默认为 None。keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则表...
Pandas中的drop_duplicates()函数用于删除数据框中的重复行。这个函数非常有用,特别是在处理大型数据集时,可以帮助我们清理数据并确保数据的唯一性。drop_duplicates()函数有一个名为keep的参数,它决定了在删除重复行时应保留哪些重复行。keep参数有三个可选值: ‘first’:默认值。只保留第一次出现的重复行,删除其...
Pandas 的DataFrame.drop_duplicates(~)方法返回删除了重复行的 DataFrame。 参数 1.subset|string或list|optional 用于识别重复项的列。默认情况下,使用所有列。 2.keep|string或boolean|optional 如何处理重复行: 默认情况下,keep="first"。 3.inplace|boolean|optional 如果是True,那么该方法将直接修改源DataFrame,...
生成具有重复值的 pandas.Index。 >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) keep 参数控制删除哪些重复值。值‘first’ 保留每组重复条目的第一次出现。保持的默认值为‘first’。 >>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle',...
方法形式为drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False),返回删掉...
1.函数 DataFrame.duplicated(subset=None, keep=‘first’) 功能:指定列数据重复项判断; 返回:指定列,每行如果重复则为True,否则为False df.drop_duplicates(subset=None, keep=‘first’, inplace
pandas函数drop_duplicates用于去除DataFrame中的重复行。 语法: DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) 参数说明: subset:指定要考虑的列名或列名的列表。默认值为None,表示考虑所有列。 keep:指定保留哪个重复的行。可选值为'first'(保留第一个出现的重复行)、'last'(保留最后一个...
df=df.drop_duplicates(subset=['sex'],keep=False)print(df) 留第一次出现的【keep='first'】 保留第一次出现的,后面的都删除。 代码语言:javascript 复制 importpandasaspdimportnumpyasnp df=pd.DataFrame({'name':['张丽华','李诗诗','王语嫣','赵飞燕','阮玲玉'],'sex':['girl','woman',np....
drop_duplicates(subset=None, keep=‘first’, inplace=False, ignore_index=False): subset: 设置根据列的子集来判断重复值,默认根据DataFrame的所有列来判断重复值,即所有列的数据都相同时,才算重复值。如果指定了子集,则只要子集的这些列的数据都相同,就算重复值。