我们来到Python环境中,通过pandas的去重函数:drop_duplicates(),下面是官方的函数说明 解释一下各个参数:subset:表示要去重的列名,默认为 None。keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则表...
是否在原始DataFrame上删除数据,默认为False,即在副本中删除。如果设置为True,则在调用drop_duplicates的DataFrame本身执行删除,返回值为None。 ignore_index:设置是否忽略行索引,默认为False,去重后的结果的行索引保持原索引不变。如果设置为True,则重置行索引为默认的整数索引。注意事项:在使用drop和drop_duplicates方法...
pandas小课堂-89使用drop_duplicates删除重复行, 视频播放量 0、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 添爸学Python, 作者简介 中年大叔用费曼学习法,学习Python、pandas、ttkbootstrap!,相关视频:
Pandas中的drop_duplicates()函数用于删除数据框中的重复行。这个函数非常有用,特别是在处理大型数据集时,可以帮助我们清理数据并确保数据的唯一性。drop_duplicates()函数有一个名为keep的参数,它决定了在删除重复行时应保留哪些重复行。keep参数有三个可选值: ‘first’:默认值。只保留第一次出现的重复行,删除其...
drop_duplicates()是Pandas库中的一个方法,用于去除DataFrame中的重复行或列。它可以帮助我们保持数据的唯一性,确保分析和处理的数据是准确和一致的。 二、drop_duplicates()的用法 1.基本用法 drop_duplicates()的基本用法非常简单。默认情况下,它会移除所有重复的行,只保留第一次出现的行。
【作用】df.drop_duplicates() 的主要功能是删除DataFrame中的重复行。【语法】df 是表示一个具体的DataFrame对象,.英文小圆点,后面紧跟的是方法名drop_duplicates,其功能是删除DataFrame对象中的重复行。【参数】subset(可选):允许指定列名或列名列表,用于检测是否存在重复项,默认值为None,表示检查...
Pandas之drop_duplicates:去除重复项 方法 DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) AI代码助手复制代码 参数 这个drop_duplicate方法是对DataFrame格式的数据,去除特定列下面的重复行。返回DataFrame格式的数据。 subset : column label or sequence of labels, optional 用来指定特定的列,...
df=df.drop_duplicates(subset=['sex'],keep=False)print(df) 留第一次出现的【keep='first'】 保留第一次出现的,后面的都删除。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 importpandasaspdimportnumpyasnp df=pd.DataFrame({'name':['张丽华','李诗诗','王语嫣','赵飞燕','阮玲玉'],'sex...
drop_duplicates()是 Pandas 中用于删除 DataFrame 中重复行的函数。它可以根据指定的列或所有列来识别重复行,并删除这些重复行,只保留第一次出现的行(默认行为)。该函数的基本语法如下: DataFrame.drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False) ...
df = pd.DataFrame(data)# 删除重复行,保留第一次出现的行df_no_duplicates = df.drop_duplicates() print(df_no_duplicates) 2)基于特定列删除重复行 importpandasaspd# 创建示例DataFramedata = {'A': [1,2,2,3,4,4,5],'B': ['a','b','b','c','d','d','e']} ...