本文我们介绍用深度强化学习中最经典的模型——DQN来进行建模,完整代码放在GitHub上。在DQN模型中,采用了多个全连接线性层,其模型结构如下: classQNetwork(nn.Module):"""QNetwork (Deep Q-Network), state is the input,and the output is the Q value of each action."""def__init__(self,state_size,ac...
The most simple, flexible, and comprehensive OpenAI Gym trading environment (Approved by OpenAI Gym) reinforcement-learningtradingopenai-gymq-learningforexdqntrading-algorithmsstocksgym-environmentstrading-environments UpdatedMar 14, 2024 Python Rainbow is all you need! A step-by-step tutorial from DQN ...
GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
I then wanted to try working on a game that required decisions to be made before the game actually started. In Gwent Lite, and other similar trading/collectible card games like Gwent, Hearthstone, and Magic: The Gathering, players have to make decisions about what kind of deck they want to...
gamma(float): the decay rate for value at RL history_length(int): input_length for each scale at CNN n_feature(int): the number of type of input (e.g. the number of company to use at stock trading) n_history(int): the nubmer of history that will be used as input n_smooth,...
stock trading by Deep Q-Learning (Deep Q Network). Contribute to wdy06/stock_dqn_f development by creating an account on GitHub.
发现一篇超好的juypter notebook,在github上面虽然很多人都会说machine learning trading strategy,但是!大部分做到prediction就没了!!!标准标题党!!!(生气.jpg)(就是想白嫖.jpg) 但是这篇不一样!这…
Quant Trading and Machine Learning10 人赞同了该文章 本文对应的代码和juypter-notebook在: Ceruleanacg/Learning-Notesgithub.com/Ceruleanacg/Learning-Notes/blob/master/note/DQN.ipynb 问题设定 在小车倒立杆(CartPole)游戏中,我们希望通过强化学习训练一个智能体(agent),尽可能不断地左右移动小车,使得小车上...
https://github.com/Ceruleanacg/Learning-Notesgithub.com/Ceruleanacg/Learning-Notes 背景 Double DQN是DQN(Deep Q Network)的一种改进,旨在解决DQN训练过程中存在的过估计(Overestimating)问题。在训练过程中,与DQN直接选取目标网络(Target Q Network)中下一个State各个Action对应的Q值最大的那一个Q值不同,Doub...
We study symmetry properties of the algorithm stemming from label-invariant stochastic games and as a proof of concept, apply our algorithm to learning optimal trading strategies in competitive electronic markets. PDF Abstract Code Edit p-casgrain/Nash-DQN 41 Tasks Edit Q-Learning Reinforcement...