DQN 算法最终更新的目标是让Qω(s,a)逼近r+γmaxa′∈AQ(s′,a′),由于 TD 误差目标本身就包含神经网络的输出,因此在更新网络参数的同时目标也在不断地改变,这非常容易造成神经网络训练的不稳定性。为了解决这一问题,DQN 便使用了目标网络(target network)的思想:既然训练过程中 Q 网络的不断更新会导致目标
DQN 使用经验回放(Experience Replay)和固定 Q-目标(Fixed Q-Targets)技术,有效地稳定了训练过程,解决了数据相关性和目标漂移问题。 缺点: DQN 对于超参数的选择非常敏感,如学习率、回放缓冲区大小、折扣因子等。 DQN 并不能很好地处理连续动作空间的问题,对此需要使用其他算法,如深度确定性策略梯度(DDPG)。 4. ...
DQN(Deep Q Networks)介绍DQN是一种深度增强学习算法,它采用神经网络来学习Q值函数。Q值函数是一个将状态和行动映射到Q值的函数,表示通过执行该行动在特定状态下获得的预期回报。这里的Q值函数是使用深度神经…
为了解决如上两个问题,Mnih 等人提出了深度Q网络 (Deep Q-Network,DQN),其本质上是Q-learning算法,但使用深度学习网络拟合Q函数,解决了无限状态下的动作价值函数存储问题,同时采用经验重现(Experience Replay)和固定Q目标(Fixed-Q-Target)两个创新点来解决上述两个问题。 经验重现(Experience Replay):使用一个经验池...
1. 什么是强化学习 其他许多机器学习算法中学习器都是学得怎样做,而强化学习(Reinforcement Learning, RL)是在尝试的过程中学习到在特定的情境下选择哪种行动可以得到最大的回报。在很多场景中,当前的行动不仅会影响当前的rewards,还会影响之后的状态和一系列的rewards。RL最重要的3个特定在于: ...
Q-learning是一种经典的强化学习算法,而DQN(Deep Q-Network),即深度Q网络,是一种基于深度学习的Q-Learing算法和强化学习算法,它是首个成功将深度学习应用于解决强化学习任务的算法之一。 DQN基于值迭代(Value Iteration)的思想,通过估计每个状态动作对的价...
强化学习——DQN算法 1、DQN算法介绍 DQN算与sarsa算法和Q-learning算法类似,对于sarsa和Q-learning,我们使用一个Q矩阵,记录所有的state(状态)和action(动作)的价值,不断学习更新,最后使得机器选择在某种状态下,价值最高的action进行行动。但是当state和action的数量特别大的时候,甚至有限情况下不可数时,这时候再用Q...
DQN(Deep Q-Network)是强化学习中的一种基于深度神经网络的方法,用于学习最优策略。本文将详细介绍DQN的原理、实现方式以及如何在Python中应用。 什么是DQN? DQN是一种基于深度神经网络的强化学习方法,其核心思想是利用神经网络来近似Q-value函数,从而学习最优策略。DQN通过使用经验回放和固定Q-target网络来稳定训练...
三. DQN 一. 强化学习 1. 什么是强化学习问题? 强化学习是机器学习领域的三大分支之一,深度学习+强化学习也被认为是通往通用AI的道路。 强化学习问题可以描述为agent从environment中获取观察的state和获取reward,并产生action作用于environment。如上图描述所示。用数学语言描述就是Markov Decision Process...