Dueling DQN的更新过程和DQN类似,只是在计算Q值时采用了Dueling结构。 对于实现DoubledQN和Dueling DQN的agent,可以使用深度学习库(如TensorFlow或PyTorch)来构建神经网络,并通过优化算法(如梯度下降法)来更新网络参数。同时,还需要考虑经验回放机制和ε-greedy策略等技术来增加训练的稳定性和探索能力。具体实现过程会依据编...
只不过maxa ′Qω −( s ′ , a ′ ) 的计算只用到了其中的目标网络,那么我们恰好可以直接将训练 网络作为 Double DQN 算法中的第一套神经网络来选取动作,将目标网络作为第二套神经网络计算 Q 值,这便是 Double DQN 的主要思想。
噪声深度Q网络(noisy DQN)比DQN的性能好很多。紫色的线代表 DDQN,DDQN 还挺有效的。优先级经验回放的双深度Q网络(prioritized DDQN)、竞争双深度Q网络(dueling DDQN)和分布式深度Q网络(distributional DQN)性能也挺高的。异步优势演员-评论员(asynchronous advantage actor-critic,A3C)是演员-评论员的方法,A3C算法又...
Dueling DQN Double DQN改进了DQN的参数更新部分,Prioritized DQN改进了DQN的经验回放部分,Dueling DQN则是通过优化神经网络的结构来优化算法。在许多基于视觉的感知的DRL任务中,不同的状态动作对的值函数是不同的,但是在某些状态下,值函数的大小与动作无关。因此Dueling DQN把Q值更新分开成两个部分,一个是状态v函数...
Double DQN & Dueling DQN Value-based Sequential Decision 刘浚嘉:强化学习基础 Ⅳ: State-of-the-art 强化学习经典算法汇总275 赞同 · 18 评论文章 Implement TODO Double DQN 因为我们的神经网络预测 Qmax 本来就有误差, 每次也向着最大误差的 Q现实 改进神经网络, 就是因为这个 Qmax 导致了overestimate(过估...
与君共勉,一起学习。 更多Ai资讯:公主号AiCharm 1. 简介 DQN 算法敲开了深度强化学习的大门,但是作为先驱性的工作,其本身存在着一些问题以及一些可以改进的地方。于是,在 DQN 之后,学术界涌现出了非常多的改进算法。本章将介绍其中两个非常著名的算法:Double DQN和Dueling DQN,这两个算法的实现非常简单,...
竞争深度Q网络(dueling DQN):将原来的深度Q网络的计算过程分为两步。第一步计算一个与输入有关的标量 $\mathrm{V(s)}$;第二步计算一个向量 $\mathrm{A(s,a)}$ 对应每一个动作。最后的网络将两步的结果相加,得到我们最终需要的Q值。用一个公式表示就是 $\mathrm{Q(s,a)=V(s)+A(s,a)}$ 。另外...
让我们对传统的 Deep Q-Network (DQN), Double DQN, Dueling DQN 和 Dueling Double DQN 进行对比总结,看看它们各自的特点和优劣势。 1、Deep Q-Network (DQN) 特点- 使用深度神经网络来估计 Q 函数,从而学习到每个状态下每个动作的价值。- 使用经验回放和固定 Q 目标网络来提高稳定性和收敛性。
·Dueling DQN Dueling DQN算法提出了一种新的神经网络结构——对偶网络(duel network)。网络的输入与DQN和DDQN算法的输入一样,均为状态信息,但是输出却有所不同。Dueling DQN算法的输出包括两个分支,分别是该状态的状态价值V(标量)和每个动作的优势值A(与动作空间同维度的向量)。DQN和DDQN算法的输出只有一个分支...
1、Dueling Network 什么是Dueling Deep Q Network呢?看下面的图片 上面是我们传统的DQN,下面是我们的Dueling DQN。在原始的DQN中,神经网络直接输出的是每种动作的 Q值, 而 Dueling DQN 每个动作的 Q值 是有下面的公式确定的: 它分成了这个 state 的值, 加上每个动作在这个 state 上的 advantage。我们通过下面...