Doris的Merge-on-Write表是Doris数据库中的一种数据模型,它支持在写入时对数据进行去重和合并,从而减少查询时的数据聚合过程,提高查询效率。这种模型特别适用于需要实时高吞吐的Upsert写入,并保证Exactly-Once的写入语义的场景。 为什么Doris Merge-on-Write表的分区列必须是键列 在Doris中,Merge-on-Write表的分区列必...
Merge-on-Read 的特点是写⼊速度比较快,但是在数据读取过程中由于需要进⾏多路归并排序,存在着大量非必要的 CPU 计算资源消耗和 IO 开销。 因此在 1.2.0 版本中,Apache Doris 在原有的 Unique Key 数据模型上增加了 Merge-on-Write 的数据更新模式。Merge-on-Write 兼顾了写入和查询性能。在写⼊的过程中...
Doris 在 1.2 版本后引入了 Unique 模型新的实现方式,写时合并(Merge on Write),通过在写入时将被覆盖和被更新的数据进行标记删除,在查询的时候,所有被标记删除的数据都会在文件级别被过滤掉,读取出来的数据就都是最新的数据,消除掉了读时合并中的数据聚合过程,并且能够在很多情况下支持多种谓词的下推。 简单来...
后台会启动异步的 Compaction 进程对历史版本数据进⾏清理,当⽤户在查询时 Doris 会将最新版本对应的数据返回给⽤户,这种设计解决了海量数据的更新问题。 在Doris 中提供了 Merge-on-Read 和 Merge-on-Write 两种数据更新模式。 在此我们以订单数据的写入为例介绍 Merge-on-Read 的数据写入与查询流程,三条订...
Merge-on-Write 写时合并是 Apache Doris 在 1.2.0 版本中引入的新特性,将 Unique Key 表的数据按主键去重工作从查询阶段转移到了写入阶段,因此在查询时可以获得与 Duplicate Key 表相当的性能。 具体来说,通过写时合并可以避免不必要的多路归并排序,始终保证有效的主键只出现在一个文件中(即在写入的时候保证了...
"enable_unique_key_merge_on_write"="true" 聚合模型 聚合模型通过AGGREGATE KEY来指定key值,聚合模型只有key、value两列,建表时,key列必须在value列前面,多个key值重复时,聚合模型会自动按指定的key列进行value的AggregationType类型聚合。主键模型是一种特殊的聚合模型。
接下来,看一下基于 Delete Bitmap 的 Merge On Write 的写入流程。首先,DeltaWriter 会先将数据 flush 到磁盘。第二步,我们会批量检查所有 Key。在点查过程中,会经过一个区间树,查找到对应的 RowSet。然后,在 RowSet 内部通过 BloomFilter 和 index 高效查询。当查询到 Key 对应的 RowSet 后,便会覆盖 Row...
临时的解决办法是跟用户沟通是否可以修改模型,根本的解决方法是升级集群版本,借助 1.2 版本的 Merge On Write 特性,使得查询能够应用索引。 在1.2.4 版本中, 用户把 Java UDF Hive UDF 迁移到 Doris 中后发现 Doris 不支持 Hive UDF 的重载,所以我们把源码做了改造,使其能够支持 Hive UDF 的重载。
回顾Apache Doris 过去的发展历程,如果用一个关键词来形容 Apache Doris 在过去的 2022 年所取得的种种收获,我们相信是“厚积而薄发后的全面进化”——在 2022 年所发布的版本中,我们全面启用了向量化执行引擎、实现了主键模型上 Merge-on-Write 数据更新模式、引入统一的数据湖对接框架 Multi-Catalog 以及毫秒级的...
对于数据更新,Apache Doris提供的是对Merge on Read和Merge on Write的支持。前者用于低频批量更新,后者用于实时写入。通过Merge on Write,最新的数据将在执行查询时准备就绪,这就是为什么与Merge on Read相比,它可以将查询速度提高5到10倍的原因。 从实现的角度来看,以下是一些常见的数据更新操作,Doris都支持: ...