领域对抗神经网络 (Domain Adversarial Neural Network,DANN)[2]是域自适应使用最为广泛的方法之一。 它的核心想法就是在表示层面减少边缘分布P(X)和Q(X)的差异。 生成对抗网络Generative Adversarial Net (GAN)[3]引入了一个判别器来刻画真实的数据分布和生成的数据分布之间的差异。受到GAN的启发,DANN使用域判别器...
领域对抗神经网络 (Domain Adversarial Neural Network,DANN)[2]是域自适应使用最为广泛的方法之一。它的核心想法就是在表示层面减少边缘分布和的差异。 生成对抗网络 Generative Adversarial Net(GAN)[3]引入了一个判别器来刻画真实的数据分布和生成的数据分布之间的差异。受到 GAN 的启发,DANN 使用域判别器(Domain ...
为了更好地理解这个概念,我们可以生成一张示意图,展示 DANN 在处理室内和室外图像时的特征提取和分类过程。 这张图展示了Domain Adversarial Neural Network(DANN)在图像识别任务中的工作原理。您可以看到,图中描绘了两种不同的域:室内和室外场景。特征提取器位于中心,从室内和室外图像中提取特征。这些特征随后被分为...
没错 Domain Adversarial Training,就非常像是 Gan,你可以把 Feature Extractor,想成是 Generator,把 Domain Classifier,想成是 Discriminator,那其实 Domain Adversarial Training,最早的 Paper,我记得是发表在 2015 年的 ICML 上面,比那个 Gan 还要稍微晚一点点啦,不过它们几乎可以说是同时期的作品,在 Domain...
Domain Adversarial Learning 极大极小化 最优域分类器不仅可以区分源域和目标域,而且还可以识别源实例的类标签。为此,引入了一个K+1路分类器作为域分类器D,其中K是源类的数量。 第K种方法建模类分布,最后一种方法建模域分布。我们使用一个热编码来表示每个实例x的类标签,并添加一个元素来表示x是否来自目标域。
Domain-adversarial training of neural networks Abstract 我们介绍了一种新的用于域自适应的表征学习方法,其中训练和测试时的数据来自相似但不同的分布。我们的方法直接受到域自适应理论的启发,该理论认为,要实现有效的域转移,必须基于不能区分训练(源)域和测试(目标)域的特征进行预测。
通过域对抗训练 (Domain adversarial training: DAT) 最小化域分歧(domain divergence),在 DA/DG 任务中显示出了很好的的泛化性能。如下图所示,我们在 backbone+classifier 的基础上增加一个域分类器来对特征归属的域进行分类,在梯度反传至 backbone 时将符号取负,以此训练 backbone 让他的特征与域信息无关,只与...
domain-adversarial training of neural networks 神经网络的领域对抗训练 重点词汇释义 neural神经的; 背的,背侧的 networks网( network的名词复数 ); 网络; 网状物; 广播网
JournalofMachineLearningResearch17(2016)1-35Submitted5/15;Published4/16Domain-AdversarialTrainingofNeuralNetworksYaroslavGaninganin@skoltech.ruE..
五、Domain Adversarial Training 如第四大点中的base idea,我们想让模型学习source domain和target domain两个域中共有的特征(如上图中,source域数据集是黑白图片,而target domain数据有颜色,特征提取器提取的特征应该尽量不包含颜色信息,即服从相同的分布)。所以model分为特征提取器+标签预测器。