import os import matplotlib.pyplotaspltfromkeras.preprocessing.image importImageDataGeneratorfromkeras.models importSequentialfromkeras.layers import Conv2D,MaxPool2D,Flatten,Dense,Dropouttrain_set_base_dir='G:/dataset/kaggle_dogs_and_cats/subset/train_set/'validation_set_base_dir='G:/dataset/kaggle_d...
dataset -- dogs and cats https://www.kaggle.com/c/dogs-vs-cats/data 分类: dataset 好文要顶 关注我 收藏该文 微信分享 cdekelon 粉丝- 5 关注- 3 +加关注 0 0 升级成为会员 posted on 2018-12-29 14:45 cdekelon 阅读(71) 评论(0) 编辑 收藏 举报 刷新页面返回顶部 登录后才能...
Kaggle is the world’s largest data science community with powerful tools and resources to help you achieve your data science goals.
Web services are often protected with a challenge that's supposed to be easy for people to solve, but difficult for computers. Such a challenge is often called a CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) or HIP
Cats很多相关图片集,找一个下载下来。 我这里采用的数据集是: Train:4000张cat + 4000张dog Test:1000张cat + 1000张dog Pytorch版本:(torch 1.3.1+cpu) + (torchvision 0.4.2+cpu) 步骤: 1. 重定义我们的Dataset 2. 定义我们的Pytorch CNN结构 3. 利用定义好的Dataset,载入我们的数据集 4. 创建CNN...
7. 1.7_the-iris-dataset~1 01:07 8. 1.8_reading-the-data~1 04:09 9. 1.9_one-hot-encoding~1 01:25 10. 1.10_designing-the-nn~1 02:12 11. 1.11_iris-classifier-in-code~1 06:26 12. 2.1_introduction-a-conversation-with-andrew-ng~1 01:26 13. 2.2_creating-a-convolutional...
CNN classifier for color(RGB) images. Contribute to gerald-wambui/MicrosoftCatsandDogsDatasetTensorflow development by creating an account on GitHub.
This branch is up to date withypwhs/dogs_vs_cats:master. README 本文会通过 Keras 搭建一个深度卷积神经网络来识别一张图片是猫还是狗,在验证集上的准确率可以达到99.6%,建议使用显卡来运行该项目。本项目使用的 Keras 版本是1.2.2。如果你使用的是更高级的版本,可能会稍有参数变化。
kaggle猫狗分类训练集 S Schubert_s_w 1枚 kaggle GPL 2 分类图像分类计算机视觉 0 8 2023-04-07 详情 相关项目 评论(0) 创建项目 文件列表 train.zip train.zip (543.16M) 下载 kaggledogsvscats File Name Size Update Time train/cat.0.jpg 12414 2013-09-20 10:05:42 train/cat.1.jpg 16880 201...
dataset_name = 'cats_vs_dogs' dataset, info = tfds.load(name=dataset_name, split=tfds.Split.TRAIN, with_info=True) for i in dataset: print(i) Expected behavior I except to be able to iterate over all the images without getting errors and without it taking forever to complete a single...