上面解释了CNN网络的基本结构,将图像的二维矩阵从输入层输入卷积神经网络,经过一系列神经元提取特征,处理特征最后得到分类结果,似乎好像很简单,但是好像有一件很重要的事情没有解释:无论是全连接层还是实现了权值共享的卷积层,我们都需要确认各个神经元中各层的全连接权重参数和卷积核中的参数,这就要涉及到模型训练了。
从广义上来说,NN(或是更美的DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。但是如果说DNN特指全连接的神经元结构,并不包含卷积单元或是时间上的关联。因此,如果一定要将DNN、CNN、RNN等进行对比,也未尝不可。 其实,...
在RFBNet算法中,利用空洞卷积来模拟pRF在人类视觉皮层中的离心率的影响,设计了RFB模块,从而增强轻量级...
除了DNN、CNN、RNN、ResNet(深度残差)、LSTM之外,还有很多其他结构的神经网络。如因为在序列信号分析中,如果我能预知未来,对识别一定也是有所帮助的。因此就有了双向RNN、双向LSTM,同时利用历史和未来的信息。 事实上,不论是哪种网络,他们在实际应用中常常都混合着使用,比如CNN和RNN在上层输出之前往往会接上全连接层...
卷积神经网路结构 卷积层 卷积计算又称为卷积核或过滤器,卷积核窗口形状取决于卷积核的高和宽,其相当...
深入研究DNN,CNN和RNNDropout方法 进行正则化,蒙特卡洛不确定性和模型压缩 动机 在(深度)机器学习中训练模型时的主要挑战之一是协同适应。这意味着神经元彼此非常依赖。它们彼此之间影响很大,并且在输入方面不够独立。找到某些神经元具有比其他神经元重要的预测能力的情况也是很常见的。换句话说,我们的输出可能会过度依赖...
DNN->全连接DNN出现参数膨胀问题-->CNN出现(卷积神经网络,参数共享) DNN-->无法对时间序列进行建模-->RNN出现(循环神经网络,普通的全连接网络或CNN,是前向神经网络,RNN可以直接将输出作为下一时间段的输入,深度是时间的长度) RNN-->依然存在梯度消失的问题(发生在时间轴上),无法解决长时间依赖的问题-->LSTM出...
CNN即由卷积层(Conv层)构建的网络结构。深度学习之所以在短时间内井喷似的爆发了,根本原因就是CNN的提出,他解决了DNN最大的一个问题——参数爆炸,导致难以收敛。CNN的思想是,每一个featuremap的共用一个卷积核(kernel),不同卷积层之间的卷积核参数的独立的。对于前面提到的[1x100x128]的输入,kernel数为256,kernel...
DNN(深度神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)都属于第三代神经网络,在认识它们之前,让我们简单了解下,第一代和第二代神经网络是什么样子的。 第一代神经网络又称为感知机,在上世纪五、六十年代被提出来,感知机属于二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别(取+1和-1),即...
普通的 DNN 用的是全连接层,参数数量特别多。因此,可以根据图像特征,将DNN 简化为CNN。 用比较少的参数做影像处理,把一些不必要的参数过滤掉。 (1)基于以下几个观察(特性),如何减少参数: 1、第一个hidden layer 的工作是侦测有没有鸟嘴的存在。不需要整张图的参数,只需要一小部分的图片(减少参数)就可以判断...