AI代码解释 #include<iostream>#include<cmath>using namespace std;intsign(int x){returnx>0?1:-1;}intdivideConquer(int x,int y,int n){int s=sign(x)*sign(y);// 正负号x=abs(x);y=abs(y);if(x==0||y==0)return0;elseif(n==1)returns*x*y;else{intA=(int)x/pow(10,(int)(n...
我们用伪代码来具体分析~ Divide-and-Conquer(P) 1. if |P|≤n0 2. then return(ADHOC(P)) 3. 将P分解为较小的子问题 P1 ,P2 ,…,Pk 4. for i←1 to k 5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi 6. T ← MERGE(y1,y2,…,yk) △ 合并子问题 7. return(T) 其中|P|表示...
int BD = divideConquer(B, D, n / 2); int ABDC = divideConquer((A - B), (D - C), n / 2) + AC + BD; return s * (AC * pow(10 , n) + ABDC * pow(10, (int)(n / 2)) + BD); } } int main() { int a = 1234, b = -9876; int result = divideConquer(a,b,...
1 : -1; } int divideConquer(int x, int y, int n) { int s = sign(x) * sign(y); // 正负号 x = abs(x); y = abs(y); if(x == 0 || y == 0) return 0; else if(n == 1) return s * x * y; else { int A = (int) x / pow(10, (int)(n / 2)); int ...
二.分治算法设计模式 1.分治(Divide-and-Conquer(P))算法设计模式如下: if |P| <=n0 then return(ADHOC(P)) //将P分解为较小的子问题 P1,P2,……,Pk for i<-1 to k do yi <- Divied-and-Conquer(Pi) 递归解决Pi T <- MERGE(y1,y2,……,yk)合并子问题 return(T) ...
思路分析 快速排序的总体思路是“分而治之”。具体操作包括选取一个枢轴,通过交换操作将数据重新排列,使得小于枢轴的元素位于左侧,大于枢轴的元素位于右侧。然后对两侧分别递归进行排序。实现代码 伪代码如下:(具体代码实现细节未列出)大整数乘法 在计算机中处理大整数乘法时,常规的整数或浮点类型无法...
经典优化算法中的分治法,即Divide-and-Conquer策略,是一种强大的问题解决技巧,通过将复杂问题分解为更小的、相似的子问题,再逐个解决并合并结果。它在众多高效算法中占据核心地位,如排序(如快速排序和归并排序)和信号处理(如快速傅立叶变换)。举个通俗的例子,寻找100枚硬币中重量不同的假币,...
Divide-and-conquer algorithm: an = a n/2 ? a n/2 a (n–1)/2 ? a (n–1)/2 ? a if n is even; if n is odd. T(n) = T(n/2) + Θ(1) ? T(n) = Θ(lg n) . Fibonacci numbers Recursive definition: 0 if n = 0; if n = 1; Fn = 1 Fn–1 + Fn–2 if n ...
Divide and conquer (D&C) is an important algorithm design paradigm based on multi-branched recursion. A divide and conquer algorithm works by recursively breaking down a problem into two or more sub-problems of the same (or related) type, until these become simple enough to be solved directly...
In order to implement the divide and conquer algorithm in figure 14-13, you need to determine what is a small problem and how to represent it. Since there is no nearest point pair in the set of less than two points, it is necessary to ensure that the decomposition process does no...