The developers of Stable Diffusion models decided to address the problem of high computational cost and expensive inference in diffusion models (DMs), already known for their state-of-the-art synthesis results on image data. To tackle this issue, the researchers applied DMs in the latent space o...
我们的隐式扩散模型(Latent Diffusion Models, LDM) 在图像修复和类条件图像合成(class-conditional image synthesis)方面取得了新的最佳分数,并在包括文本到图像合成、无条件图像生成和超分辨率等人物上的表现都极具竞争力;同时,与基于像素的 DM 相比,我们显著降低了计算要求。 1. 介绍 图像合成是最近发展最引人注目...
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation Prompt-to-Prompt Image Editing with Cross Attention Control LoRA: Low-Rank Adaptation of Large Language Models ControlNet: Adding Conditional Control to Text-to-Image Diffusion Models Text-to-3D Generation DreamField...
图像生成模型是目前业内研究的焦点,而目前诸如Sora等前沿生成模型,其所基于的主体架构都是Diffusion Transformers(DiT)。Diffusion Transformers(DiT)是论文Scalable Diffusion Models with Transformers(ICCV 2023)中提出的,是扩散模型和Transformer的结合,也是Sora使用的底层生成模型架构,将Diffusion Transformers从图像生成扩展...
10、ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models 3D资产生成正受到大量关注,受到最近文本引导的2D内容创建成功的启发,现有的文本到3D方法使用预训练文本到图像扩散模型来解决优化问题,或在合成数据上进行微调,这往往会导致没有背景的非真实感3D物体。 本文提出利用预训练的文本到图像模型作为先...
图像生成模型是目前业内研究的焦点,而目前诸如Sora等前沿生成模型,其所基于的主体架构都是Diffusion Transformers(DiT)。Diffusion Transformers(DiT)是论文Scalable Diffusion Models with Transformers(ICCV 2023)中提出的,是扩散模型和Transformer的结合,也是Sora使用的底层生成模型架构,将Diffusion Transformers从图像生成扩展...
图像生成模型是目前业内研究的焦点,而目前诸如Sora等前沿生成模型,其所基于的主体架构都是Diffusion Transformers(DiT)。Diffusion Transformers(DiT)是论文Scalable Diffusion Models with Transformers(ICCV 2023)中提出的,是扩散模型和Transformer的结合,也是Sora使用的底层生成模型架构,将Diffusion Transformers从图像生成扩展...
半年多的时间,Alex Nichol 和Prafulla Dhariwal再度携手,带领团队于2021年12月20日发布了最新研究《GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models 》。论文地址:https://arxiv.org/pdf/2112.10741v1.pdf 以文本“萨尔瓦多·达勒(salvador daĺı)的超现实主义...
6、Towards Effective Usage of Human-Centric Priors in Diffusion Models for Text-based Human Image Generation 传统的文本到图像扩散模型在生成准确的人物图像方面存在困难,例如不自然的姿势或不成比例的肢体。现有方法大多通过在模型微调阶段添加额外的图像或人体中心先验(例如姿势或深度图)来解决这个问题。本文探讨...
6、Towards Effective Usage of Human-Centric Priors in Diffusion Models for Text-based Human Image Generation 传统的文本到图像扩散模型在生成准确的人物图像方面存在困难,例如不自然的姿势或不成比例的肢体。现有方法大多通过在模型微调阶段添加额外的图像或人体中心先验(例如姿势或深度图)来解决这个问题。本文探讨...