C = x.shape[:2] assert t.shape == (B,) model_output = model(x, self._scale_t...
而这个通过高斯噪声采样得到 x_t 的过程在diffusion model中到处都是,因此我们需要通过重参数技巧来使得他梯度可导。 一般可以把随机性通过一个随机变量( \epsilon )引导过去,如果从高斯分布 z\sim N(z ;\mu_{\theta,}{\sigma_{\theta}^2}I) 采样一个 z ,可以写成 z=\mu_{\theta}+\sigma_{\theta}...
Denoising diffusion probabilistic models (DDPMs) are a specific type of diffusion model that focuses on probabilistically removing noise from data. During training, they learn how noise is added to data over time and how to reverse this process to recover the original data. This involves using pr...
In this paper, we focus on three major context-aware IM problems (see Section 5), which are location, time, and topic. For the topic part, the classical diffusion model is mainly extended, and for the location and time parts, the classical diffusion model is improved or a new diffusion ...
Stable Diffusion 是一个2022年发布的深度学习文本到图像的潜在扩散模型(LDM / Latent Diffusion Model),由 CompVis、Stability AI 和 LAION 的研究人员和工程师创建。它使用来自 LAION-5B 开源数据库子集的512x512图像进行训练,通过引入隐向量空间来解决 Diffusion 速度瓶颈,除了可用于文生图任务,还可以用于图生图、...
This overview covers the basic theory behind diffusion modeling, through a breakdown of the “Real-World Denoising via Diffusion Model” paper
We’re currently in the midst of a generative AI boom. In November 2022, Open AI’s generative language model ChatGPT shook up the world, and in March 2023 we even got GPT-4! Even though the future of…
wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/datasets/try_on/train_text_to_image_lora.py#下载预训练模型并转化成diffusers格式safety_checker_url=f"{prefix}/aigc-data/hug_model/models--CompVis--stable-diffusion-safety-checker.tar.gz"aria2(safety_checker_url,safety_chec...
routes.Request object at 0x0000024A8CCB4670>, 0, False, '', 0.8, -1, False, -1, 0, 0, 0, True, False, {'ad_model': 'face_yolov8n.pt', 'ad_prompt': '', 'ad_negative_prompt': '', 'ad_confidence': 0.3, 'ad_mask_k_largest': 0, 'ad_mask_min_ratio': 0, 'ad_mask...
As with any likelihood-based model, learning can be roughly divided into two stages: First is a perceptual compression stage which removes high-frequency details but still learns little semantic variation. In the second stage, the actual generative model learns the semantic and conceptual composition...