虽然 diffusion model 近几年有了大的发展,但在生成任务上,比较 GANs 还是略逊一筹。作者认为 diffusion model 在目前还没有被深度研究优化,于是对目前的 diffusion model 进行大量的消融优化,并借鉴 conditional GANs 来训练 conditional diffusion model,并使用分类信息来引导生成过程,大幅度提到了 diffusion model 的...
第1 篇:《Denoising Diffusion Probabilistic Models》 摘要 前一篇介绍了 diffusion model 的设计灵感和主要的思想。这篇沿用了之前的想法,用一个马尔科夫链来构成一个生成模型,训练是是把原始分布逐步扩散到一个噪声分布,然后学习其逆扩散的过程。不同的是此处把模型的逆扩散过程更加形象地看成是去噪过程(DDPM),并...
论文:arxiv.org/abs/2401.0165 代码: 单位:中国科学院大学 Diffusion-SS3D 题目:Diffusion-SS3D: Diffusion Model for Semi-supervised 3D Object Detection 名称:Diffusion-SS3D:半监督3D目标检测的扩散模型 论文:arxiv.org/abs/2312.0296 代码:github.com/luluho1208/D 单位:台湾阳明交通大学 3DifFusionDet ...
链接是 Diffusion Model for Dense Matching 作者来自 韩国 ICLR得分也是 4个8 (accept, good paper) What: 现有数据驱动的图像匹配算法不能解决 有歧义区域匹配,比如 没有纹理的区域,重复的区域,和 比较大的 displacement 或者噪声。 本文提出了 DiffMatch,一个 conditional diffusion-based framework 来显式利...
4、Diffusion Model recap 在扩散模型里,有几个重要的假设。其中一个就是每一步扩散过程的变换,都是对前一步结果的高斯变换(上一节 MHVAE 的限制条件 2): ▲与 MHVAE 不同,编码器侧的潜在向量分布并不经过学习得到,而是固定为线性高斯模型 这一点和 V...
本文综述了深度生成模型,特别是扩散模型(Diffusion model),如何赋予机器类似人类的想象力。扩散模型在生成逼真样本方面显示出巨大潜力,克服了变分自编码器中的后分布对齐障碍,缓解了生成对抗网络中的对抗性目标不稳定性。 扩散模型包括两个相互...
来自加州大学&Google Research的Ming-Hsuan Yang、北京大学崔斌实验室以及CMU、UCLA、蒙特利尔Mila研究院等众研究团队,首次对现有的扩散生成模型(diffusion model)进行了全面的总结分析,从diffusion model算法细化分类、和其他五大生成模型的关联以及在七大领域中的应用等方面展开,最后提出了diffusion model的现有limitation和...
为了系统地阐明diffusion model的研究进展,我们总结了原始扩散模型的三个主要缺点,采样速度慢,最大化似然差、数据泛化能力弱,并提出将的diffusion models改进研究分为对应的三类:采样速度提升、最大似然增强和数据泛化增强。我们首先说明改善的动机,再根据方法的特性将每个改进方向的研究进一步细化分类,从而清楚地展现...
8、AutoDiffusion: Training-Free Optimization of Time Steps and Architectures for Automated Diffusion Model Acceleration 扩散模型生成一张图像通常需要大量的时间步骤(推理步骤)。为加速这个繁琐的过程,统一地减少步骤被认为是扩散模型的不争之论的原则。然而,这样的统一假设在实践中并不是最优解;也就是说,对于不...
Method(Model) Architecture & Scale SDXL 用的 UNet 是之前的三倍大,模型参数的增长主要是由于更多的注意力block和更大的交叉注意力 图1 左边是SDXL的用户满意度超过了 SD1.5, SD2.1(2.1还不如1.5啊,难怪c站一大堆模型都是1.5的) 右边是SDXL的两阶段pipeline,在基础模型之后多了一个refiner。先用SDXL生成...