该工作利用Jensen不等式给出了一种比较简单的diffusion posterior p(y|xt) 的估计,相比此前的估计方法,在加噪、非线性的逆问题上表现出更好的效果。 [2209.14687] Diffusion Posterior Sampling for General Noisy Inverse Problems (arxiv.org)arxiv.or
Choi et al., “ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models”, ICCV 2021 Kawar et al., ”SNIPS: Solving Noisy Inverse Problems Stochastically”, NeurIPS 2021 Chung et al., “Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through ...
利用训练良好的diffusion模型作为先验知识:假设我们已有一个训练良好的diffusion模型,该模型能够生成高质量图像。在图像逆问题中,这个模型被用作先验知识,以指导图像的重建过程。计算后验以重建图像:目标是通过应用diffusion模型,并利用似然度来计算后验,从而重建出原始图像。这一过程可以通过调整对应的似然...
In this research, the variational iteration method is used for solving an inverse parabolic problem and computing an unknown time-dependent parameter. In this method, the solution is calculated in the form of a convergent series with an easily computable component. This approach does not need ...
We also use optional cookies for advertising, personalisation of content, usage analysis, and social media. By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with...
12、Next3D: Generative Neural Texture Rasterization for 3D-Aware Head Avatars 3D感知生成对抗网络(GANs)仅使用单视角2D图像合成高保真度和多视角一致的面部图像。为实现对面部属性的细粒度控制,近期的研究努力将3D形变人脸模型(3D Morphable Face Model,3DMM)纳入生成辐射场的显式或隐式描述中。显式方法提供细粒度...
Inverse Problems for Fractional Diffusion Equations 主持人:张植栋 副教授 报告人:李志远 副教授 时间:2022-09-08 14:00-15:00 地点:腾讯会议 384-897-653 单位:宁波大学 摘要: The fractional equations begun to play an important ...
Reverse process using reinforcement learning: The inverse problem-solving of the diffusion models could be performed by the reinforcement learning paradigm to estimate the best inversion path rather than solid mathematical solutions. In this process, reinforcement learning can be used to search for the ...
We proposed a regularization algorithm based on Cont and Tankov's relative entropy regularization to solve this problem. We determine the regularization parameter using quasi-optimality criterion with original data error level unknown. Iteratively Guass-Newton method is developed for solving the ...
014 (2023-10-26) DiffS2UT A Semantic Preserving Diffusion Model for Textless Direct Speech-to-Speech Translation https://arxiv.org/pdf/2310.17570.pdf 015 (2023-10-26) SD4Match Learning to Prompt Stable Diffusion Model for Semantic Matching ...