从流形假设的观点看,score based generative model面临两个挑战: 1) s_{\theta^\star}(\mathrm{x}) 估计的是高维空间的梯度,当 \mathrm{x} 被限制在低维流形上时,在高维空间(ambient space)中 \nabla_{\mathrm{x}} \log p_{data}(\mathrm{x}) 有很多方向对 \mathrm{x} 是没有意义的。(直白来说...
此外,基于分数的生成模型特别适合于贝叶斯推理任务,如求解病态逆问题,在医学图像重建中的几个任务上表现出优越的性能。 科技 计算机技术 生成模型 diffusion score-based model 机器学习
(Diffusion-based generative models 与 Score-based generative models,Stochastic Differential Equations (SDEs) 的联系可看这篇。) 一、Diffusion Probabilistic Models (DPMs) Diffusion-based generative models: forward/diffusion process:图中从右往左. 从x0经过好多个不同的q(xt|xt−1)到xT,相当于 VAE 中...
Score-based generative models (SGMs) have recently emerged as a promising class of generative models. However, a fundamental limitation is that their inference is very slow due to a need for many (e.g., 2000) iterations of sequential computations. An intuitive acceleration method is to reduce ...
论文SCORE-BASED GENERATIVE MODELING THROUGH STOCHASTIC DIFFERENTIAL EQUATIONS,从 stochastic differential equations 的角度,尝试提出了一个统一的扩散模型框架,来概括 DDPM,SMLD 等 score-based generative models。并结合物理理论,优雅的将 SDE 与扩散模型过程结合。 该论文的作者 宋飏 在他的博客中也详细地介绍了该...
(2)Score-Based Generative Models(SGM) 上述DDPM可以视作SGM的离散形式。SGM构造一个随机微分方程(SDE)来平滑的扰乱数据分布,将原始数据分布转化到已知的先验分布: 和一个相应的逆向SDE,来将先验分布变换回原始数据分布: 因此,要逆转扩散过程并生成数据,我们需要的唯一信息就是在每个时间点的分数函数。利用score-mat...
11、A Complete Recipe for Diffusion Generative Models 基于得分的生成模型(Score-based Generative Models,SGMs)在各种任务上展示了出色的生成结果。然而,目前的SGMs前向扩散过程设计领域尚未充分发挥,并且通常依赖于物理启发式或简化假设。借鉴可扩展贝叶斯后验抽样器的发展见解,提出一个完整配方,用于制定SGMs的前向过程...
11、A Complete Recipe for Diffusion Generative Models 基于得分的生成模型(Score-based Generative Models,SGMs)在各种任务上展示了出色的生成结果。然而,目前的SGMs前向扩散过程设计领域尚未充分发挥,并且通常依赖于物理启发式或简化假设。借鉴可扩展贝叶斯后验抽样器的发展见解,提出一个完整配方,用于制定SGMs的前向过程...
Simon Welker, Julius Richter, Timo Gerkmann,"Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain", ISCA Interspeech, Incheon, Korea, Sept. 2022.[bibtex] Julius Richter, Simon Welker, Jean-Marie Lemercier, Bunlong Lay, Timo Gerkmann,"Speech Enhancement and Dereverberat...
Denoising diffusion models embody a type of generative artificial intelligence that can be applied in computer vision, natural language processing and bioinformatics. In this Review, we introduce the key concepts and theoretical foundations of three diffusion modelling frameworks (denoising diffusion probabili...