由于页面的限制,将在补充材料中介绍DiffusionGAN3D在真实图像上的应用,并具体说明我们方法的局限性。 结论 本文提出了一种新颖的两阶段框架DiffusionGAN3D,通过结合3D GANs和扩散先验来提升文本引导的3D域自适应和头像生成。具体来说,将预训练的3D生成模型(例如EG3D)与文本到图像扩散模型相结合。在我们的框架中,前者...
提Diffusion之前,我们先来了解下它的一位前辈。要想让AI画图逼真,科学家们尝试过很多种方法,在Diffusion模型发明出来之前,一直主流的是GAN模型,著名的Deepfake就是基于这个模型开发,谈到Deepfake,就是可以给人换脸,而显得毫无违和感,比如之前网上热传的奥巴马、川普的各种搞怪视频。最近GAN模型最新应用就是DragGAN...
所谓扩散算法diffusion是指先将一幅画面逐步加入噪点,一直到整个画面都变成白噪声。记录这个过程,然后逆转过来给AI学习。AI看到的是什么?一个全是噪点的画面如何一点点变清晰直到变成一幅画,AI通过学习这个逐步去噪点的过程来学会作画。diffusion和之前大火的GAN模型相比,有什么优势呢?用OpenAI的一篇论文内容来讲,用diff...
今天,我们将深入探讨AIGC技术背后的核心算法——GAN、Transformer和Diffusion Models,并了解它们如何推动AI内容生成的飞速进步。 1. GAN(生成对抗网络) GAN,即生成对抗网络(Generative Adversarial Network),是由Ian Goodfellow等人于2014年提出的。GAN通过两个神经网络的“博弈”过程来生成逼真的内容。其主要结构包括一个...
Diffusion Model(扩散模型)是另一类生成模型,和GAN生成网络不同的是,扩散模型分成两个阶段,首先是 “前向阶段”,然后是“逆向阶段”。 我们还是以上面的故事举例,孩子在妈妈的监督下学画画,但是这回方法变了,在这个新的方式就是,先把原来的图像逐步用笔乱画(即添加噪声),直至图像被破坏变成完全无法识别的状态(高斯...
(1为真)就能说明生成模型效果越好;对于判断器来说,它的目的是有效地辨别出生成器生成的图片,这种情况下输出结果越趋近于0(0为假)就能说明判别模型效果越好;这样的话就形成了所谓的对抗(GAN),一个想让生成结果更趋向于1,一个想让生成的结果更趋向于0,生成的结果数值会给到两个模型和训练目标比对(一个目标是0...
StyleGAN是一种开创性的工作,不仅可以生成高质量和逼真的图像,还可以对生成的图像进行更好的控制和理解,从而比以前更容易生成可信的假图像。StyleGAN是ProGAN图像生成器的升级版本,重点关注生成器网络(G)。 StyleGAN的重点就是“Style”,在提出StyleGAN的论文中具体是指人脸的风格,包括人脸表情、人脸朝向、发型等等,还...
StyleGAN是一种开创性的工作,不仅可以生成高质量和逼真的图像,还可以对生成的图像进行更好的控制和理解,从而比以前更容易生成可信的假图像。StyleGAN是ProGAN图像生成器的升级版本,重点关注生成器网络(G)。 StyleGAN的重点就是“Style”,在提出StyleGAN的论文中具体是指人脸的风格,包括人脸表情、人脸朝向、发型等等,还...
三、2014年生成式对抗网络(GAN) 2014年,加拿大蒙特利尔大学Ian Goodfellow等人提出的生成对抗网络算法为AI绘画带来了新的发展,它本质上是通过生成器和判别器的对抗过程来生成图像,下面详细介绍它的训练原理: 上述图中有两个模型:生成器和判别器,这两个模型分别都有一个目标,对于生成器来说,它的目的是让自己生成的图...
大红大紫的Diffusion,真的比GAN强吗? AI绘画属于AIGC分支之一,在热潮与争议之中,2022年甚至被冠以“AIGC元年”。而随着AI 绘画的火爆,其背后用到的核心技术之一Diffusion Model(扩散模型)也在图像生成领域大红大紫,甚至风头已经隐隐有开始超过 GAN的趋势了 。