百度试题 结果1 题目1 (i) Differentiate x2 In 3x with respect to x.(ii) Hence find f x ln 3x dx. 相关知识点: 试题来源: 解析 (i)(ii) 反馈 收藏
Answer to: Differentiate. Write your final answer only as a single fraction in factored form. y=frac{2 ln x}{5^{2x-1}} By signing up, you'll get...
2. Differentiate cotx: ddx(cotx)=−csc2x Putting it all together:f′(x)=2xln(2)cotx+2x(−csc2x)=2x(ln(2)cotx−csc2x) Step 3: Apply the Quotient Rule Now we can apply the quotient rule:y′=g(x)f′(x)−f(x)g′(x)(g(x))2 Substituting f(x), f′(x), g(x), ...
Differentiate f(x)=\int_2^{\sin^2x} (t-1)dt Differentiate f(x)= e^{frac{3}{x. Differentiate: y=3e^(3x^2 +1) Differentiate: y=\frac{(u+2)^2}{1-u} Differentiate. y = \ln [e^{2x}(x^9 + 8)(x^7 + 4x)] Differentiate: f(x) = (3x -3)(\sqrt x + 5) ...
4 (i) Differentiate y=ln√(2x^2+1) with respect to x.2(ii) Hence, find ∫_0^a(2x^2+2x+1)/(2x^2+1) dr, where a0. Give your answer in terms of a.3The diagram shows the curve C with equ siny=(2x^2+2x+1)/(2x^2+1) and the curve D with equatio y=5/(√(1+8x...
x View Solution Free Ncert Solutions English Medium NCERT Solutions NCERT Solutions for Class 12 English Medium NCERT Solutions for Class 11 English Medium NCERT Solutions for Class 10 English Medium NCERT Solutions for Class 9 English Medium
【题目】Differentiate with respect tox:(1)$$ y = \ln \sqrt { 1 - 2 x } $$(2)$$ y = \ln ( \frac { 1 } { 2 x + 3 } ) $$(3)$$ y = \ln ( x \sqrt { x } ) $$(4)$$ y = \ln ( x \sqrt { 2 - x } ) $$(5)$$ y = \ln ( \frac { x + 3 } ...
Differentiate the following.\y = \sqrt{x + \sqrt{x + \sqrt{x} Differentiate the following. V (x) = (3 x^7 - 43) . (x^2 - ln x) Differentiate the following. f (x) = {2 x} / {x^2 + 3} Differentiate the following: a. \frac{t - \sqrt{t{t^{\frac{1}{9} b. \...
To differentiate the function 2xcotx√x with respect to x, we will use the quotient rule and the product rule. Let's go through the steps systematically. 1. Identify the function: y=2xcotx√x 2. Apply the Quotient Rule: The quotient rule states that if you have a function uv, then...
(9)f(x)=ln( (x^2+2x)(x-5)) 相关知识点: 试题来源: 解析 (1)(-1)(1-2x) (2)(-2)(2x+3) (3)1+1(2x) (4)1x-1(2(2-x)) (5)1(x+3)-1(x-1) (6)2x+1(3-x) (7)9(3x-4) (8)1x+(2x)(x^2+1) (9)(2x+2)(x^2+2x)-1(x-5) 结果...