1 L1Loss(绝对值损失函数) 2 CrossEntropyLoss(交叉熵损失函数) 3 NLLLoss(最大似然损失函数) 4 MSELoss(平方损失函数) 5 DiceLoss(用于计算两个样本点的相似度的距,主要应用,语义分割等) 6 Focal Loss 7 Chamfer Distance(CD、倒角距离) 8 Earth Mover’s Distance (EMD、推土机距离) 9 Density-aware Cha...
将每个类的 Dice 损失求和取平均,得到最后的 Dice soft loss。 下面是代码实现: def soft_dice_loss(y_true, y_pred, epsilon=1e-6): ''' Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions. Assumes the `channels_last` format. # Arguments ...
对于每个类别的mask,都计算一个 Dice 损失: 将每个类的 Dice 损失求和取平均,得到最后的 Dice soft loss。 下面是代码实现: def soft_dice_loss(y_true, y_pred, epsilon=1e-6):'''Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions.Assumes the...
将每个类的 Dice 损失求和取平均,得到最后的 Dice soft loss。 下面是代码实现: def soft_dice_loss(y_true, y_pred, epsilon=1e-6):'''Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions.Assumes the `channels_last` format.# Argumentsy_true:...
简单来说,相对于交叉熵,就是不用加了权重,而VNet中的改进的dice loss是基于IOU loss进行优化的,这样子改善了梯度传播。但是小物体训练的时候很敏感,训练比较震荡。 2. cross-entropy loss 上面就是CEloss,x[class]表示该类的得分,分母是整体的得分相加,这里使用了softmax做归一化。此时没有考虑类别不平衡。简而...
sum(target) + ep loss = 1 - intersection / union return loss 梯度分析 从dice loss的定义可以看出,dice loss 是一种区域相关的loss。意味着某像素点的loss以及梯度值不仅和该点的label以及预测值相关,和其他点的label以及预测值也相关,这点和ce (交叉熵cross entropy) loss 不同。因此分析起来比较复杂,...
Cross Entropy Loss的局限性 当使用交叉熵损失时,标签的统计分布对训练精度起着很重要的作用。标签分布越不平衡,训练就越困难。虽然加权交叉熵损失可以减轻难度,但改进并不显著,交叉熵损失的内在问题也没有得到解决。在交叉熵损失中,损失按每像素损失的平均值计算,每像素损失按离散值计算,而不知道其相邻像素是否为边...
在本文中,我们提出用Dice Loss缓解大量NLP任务中的数据不平衡问题,从而能够提高基于F1评分的表现。Dice Loss 形式简单且十分有效,将Cross Entropy Loss替换为Dice Loss能够在词性标注数据集CTB5、CTB6、UD1.4,命名实体识别数据集CoNLL2003、OntoNotes5.0、MSRA、OntoNotes4.0,和问答数据集SQuAD、Quoref上接近或超过当前最...
在本文中,我们提出用Dice Loss缓解大量NLP任务中的数据不平衡问题,从而能够提高基于F1评分的表现。Dice Loss 形式简单且十分有效,将Cross Entropy Loss替换为Dice Loss能够在词性标注数据集CTB5、CTB6、UD1.4,命名实体识别数据集CoNLL2003、OntoNotes5.0、MSRA、OntoNotes4.0,和问答数据集SQuAD、Quoref上接近或超过当前最...
Cross Entropy Loss的局限性 当使用交叉熵损失时,标签的统计分布对训练精度起着很重要的作用。标签分布越不平衡,训练就越困难。虽然加权交叉熵损失可以减轻难度,但改进并不显著,交叉熵损失的内在问题也没有得到解决。在交叉熵损失中,损失按每像素损失的平均值计算,每像素损失按离散值计算,而不知道其相邻像素是否为边...