密度泛函理论(DFT)是材料模拟的基石,但传统DFT在处理强关联电子体系(如过渡金属氧化物、稀土材料等)时存在局限性——电子间的强关联作用会导致计算结果偏离实验值。DFT+U 应运而生!它通过引入 Hubbard U 参数修正局域电子的库仑排斥,显著提升强关联体系的模拟精度。本教程面向零基础用户,手把手教你用VASP实现...
而交换相关泛函中的局域密度近似(LDA)或广义梯度近似(GGA)对电子之间的强在位库仑相互作用描述不准确。因此需要对DFT计算理论进行扩展,最简单的方法是在这两种泛函(LDA、GGA)的基础上加一个Hubbard参数U,这就是DFT+U理论。 EDFT+U = EDFT + EU 将研究体系的轨道分隔成两个子体系(subsystem),其中一部分是一般...
1. DFT+U:由于对电子之间的相互作用考虑的不充分,LDA和GGA对一些电子高度局域并且强关联体系并不是很适用例如,金属氧化物,稀土元素及其化合物,故而Anisimov等人对其进行修正,在LDA或者GGA的能量泛函中加入Hubbard参数U,即DFT+U方法。U就是自旋相反电子的强关联排斥能,在Hubbard模型一级近似下,U考虑了同一个原子上...
6、DFT+U model中加U的本质: U代表了d/f电荷密度随外部势(比如其它原子核对它的作用)的变化而变化的难易程度。【如果U大,那么不容易变化;如果U小,则容易变化】 U参数与材料的金属性-非金属性的有一种联系:【材料的金属性越强,U越小;材料非金属性越强,U越大。】 "在不使用+U模型时,也就是U=0,这时...
DFT+U是一种修正DFT方法,用于解决电子高度局域并且强关联体系的计算问题。其中,U是自旋相反电子的强关联排斥能,在Hubbard模型一级近似下,U考虑了同一个原子上自旋相反的局域电子之间的库伦排斥,从而导致能带的“重正化”。 以MnO为例,理论计算该体系的能带结构发现该体系是金属,而实验观察到其是绝缘体。主要原因在...
DFT+U方法是Anisimov等人在1991年建立的。Anisimov等人发现在传统的L(S)DA中,只包括了由Hund规则对应的交换参数J,而在Mott绝缘体体系中起决定作用的应当是Hubbard参数U,U通常比J大1个数量级。这致使了L(S)DA处理Mott绝缘体体系的失败。他们通过在原来的L(S)DA能量泛函中加入Hubbard参数U对应的一项,建立了DFT...
DFT+U计算是一种在密度泛函理论(DFT)基础上,添加了Hubbard模型来进行电子相互作用的理论计算方法。在进行能带结构计算时,该方法可以更准确地描述强电子相互作用,比如在过渡金属氧化物等材料中的电子行为。 在DFT+U计算中,Hubbard模型中的U参数被用来描述电子间的相互作用,而LDAU参数则被用来描述d轨道和f轨道电子之间...
这一方法适用于描述电子间的强在位库仑相互作用,以提高计算精度。DFT+U模型的引入是解决强关联体系中电子相互作用问题的关键。在实际应用中,U值的选取对于模型的准确性至关重要。U值的选择需基于理论计算与实验数据的对比,通常采用Cooccioni等人提出的线性响应法。该方法通过计算单个原子在施加有效库伦、...
DFT+U理论 在简单的固体理论中,固体中电子之间的静电相互作用被忽略,不会出现在哈密顿算符里。然而,在许多物质中,静电能不能被忽略。当把这一部分能量写入哈密顿量时,就得到强关联模型(或赫巴德模型(Hubbard model))。 对于一些特殊的材料体系,如过渡金属氧化物、稀土元素以及稀土化合物等材料,由于这些体系中含有d...