关于device_map="auto"报错的问题,我们可以从以下几个方面进行分析和解决: 1. 确认device_map="auto"的使用上下文 device_map="auto"通常用于在单机多卡环境下,自动将模型的各个部分分配到不同的GPU上,以优化性能和资源利用。这种设置特别适用于大型模型,如GPT或T5等,它们可能包含数十亿个参数,单个GPU可能无法容纳...
所以我们只需要交付一个映射,也就是一开始提到的device_map。 在hf auto里,这个事情是一个两部曲,通过transformers的utils的get_balanced_memory获取每张卡上的最大显存占用,然后再把每个GPU的最大显存占用送给accelerate的infer_auto_device_map,从而得到device_map。 get_balanced_memory的工作机制大致是 确定模型各个...
device_map="auto"doesn't use all available GPUs whenload_in_8bit=True#22595 New issue System Info transformersversion: 4.28.0.dev0 Platform: Linux-4.18.0-305.65.1.el8_4.x86_64-x86_64-with-glibc2.28 Python version: 3.10.4 Huggingface_hub version: 0.13.3 ...
device_map='auto'。为了实现支持,模型类需要实现 _no_split_modules 属性。这是我导入和配置LLM的方法from transformers import AutoModelForSequenceClassification, AutoTokenizer # Choose a model appropriate for your task model_name = "emilyalsentzer/Bio_ClinicalBERT" tokenizer = AutoTokenizer.from_pretrain...
I set device_map='auto' and loaded two models, model1 and model2, both of which have the same structure. Then, I created a copy of model2, referred to as model2_copied, and attempted to load all its parameters from model1 using load_state_dict. ...
infer_auto_device_map()(或在load_checkpoint_and_dispatch()中设置device_map="auto")是按照 GPU、CPU 和硬盘的顺序分配模型模块(防止循环操作),因此如果你的第一个层需要的 GPU 显存空间大于 GPU 显存时,有可能在 CPU/硬盘上出先奇怪的东西(第一个层不要太大,不然会发生奇怪的事情)。
The EL_DEVICE_CLASS table contains all feature classes of the Electric data model that participate in the electric topology. If a class in the topology is not included in this table it is assigned the device type Load. Feature Class Device Type Attachment Device Load Breaker Feeder Bus ...
intgetRenderFpsByMode(@MapRenderMode.MapRenderMode1 int mode) voidsetRenderFpsByMode(@MapRenderMode.MapRenderMode1 int mode, int fps) 设置渲染帧率更多... voidsetRenderFpsByMode(int fps) voidsetRenderFpsWithTimer(int fps, boolean needRestartTimer) ...
plus() got an unexpected keyword argument 'device_map'您好,在 PyTorch 1.6 中,device_map 参数...