DN-DETR认为匈牙利匹配的二义性是导致DETR训练收敛慢的原因,因此提出查询降噪机制,即利用先前DAB-DETR中将查询向量解释为锚框的原理,给查询向量添加一些噪声来辅助模型收敛,最终大幅提升了模型的训练速度。 DINO则是在DAB-DETR与DN-DETR的基础上进行进一步的融合与改进。 H-DETR为使模型获取更多的正样本特征,从而提升...
在前一篇博客中,博主介绍了利用YOLOv8与Sort算法实现目标跟踪,在今天这篇博客中,博主将利用RT-DETR算法与Sort算法相结合,从而实现目标跟踪。。 这里博主依旧是采用ONNX格式的模型文件来执行推理过程,由于Sort算法是基于检测懂得目标跟踪方法,因此我们只需要获取到检测结果即可,代码如下: import onnxruntime as ort sess...
本发明提供一种基于DETR的3D目标检测与跟踪方法,方法包括:从LIDER相机获取连续帧的点云数据流;将连续帧的原始点云数据转换为规则的体素网格并提取其高维视频特征;学习了一组4D Tubelet Query,并利用时间自注意力和空间交叉注意力模块对视频片段的动态时空特性进行建模,以增强其表征能力;最后,本发明的模型对每个Tubelet...
本项工作来自IDEA研究院计算机视觉与机器人研究中心(CVR,Computer Vision and Robotics)。该团队此前开源的目标检测模型DINO是首个在COCO目标检测上取得榜单第一的DETR类模型;在Github上大火的零样本检测器Grounding DINO与能够检测、分割一切的Grounded SAM,同样为该团队作品。