iter (int): iteration at which to calculate the warmup factor. warmup_iters (int): the number of warmup iterations. warmup_factor (float): the base warmup factor (the meaning changes according to the method used). Returns: float: the effective warmup factor at the given iteration. ""...
cfg.SOLVER.STEPS = (30000,) cfg.SOLVER.WARMUP_FACTOR = 1.0 / 1000 cfg.SOLVER.WARMUP_ITERS = 50 cfg.SOLVER.WARMUP_METHOD = "linear" cfg.SOLVER.CHECKPOINT_PERIOD = ITERS_IN_ONE_EPOCH - 1 cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) print(cf...
LR_SCHEDULER_NAME: WarmupMultiStepLR MAX_ITER: 270000 MOMENTUM: 0.9 NESTEROV: False STEPS: (210000, 250000) WARMUP_FACTOR: 0.001 WARMUP_ITERS: 1000 WARMUP_METHOD: linear WEIGHT_DECAY: 0.0001 WEIGHT_DECAY_BIAS: 0.0001 WEIGHT_DECAY_NORM: 0.0 TEST: AUG: ENABLED: False FLIP: True MAX_SIZE:...
cfg.SOLVER.IMS_PER_BATCH = 4 cfg.SOLVER.BASE_LR = 0.001cfg.SOLVER.WARMUP_ITERS = 1000 cfg.SOLVER.MAX_ITER = 1500 #adjust up if val mAP is still rising, adjust down if overfit cfg.SOLVER.STEPS = (1000, 1500) cfg.SOLVER.GAMMA = 0.05cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 64...
SOLVER.WARMUP_ITERS = 50 cfg.SOLVER.MAX_ITER = 500 #adjust up if val mAP is still rising, adjust down if overfit cfg.SOLVER.STEPS = (50, 450) cfg.SOLVER.GAMMA = 0.05 cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 32 cfg.MODEL.ROI_HEADS.NUM_CLASSES = 4 #your number of classes + ...
SOLVER.WARM_UP_ITERS warmup_factor = cfg.SOLVER.WARM_UP_FACTOR * (1 - alpha) + alpha else: raise KeyError('Unknown SOLVER.WARM_UP_METHOD: {}'.format(method)) lr *= warmup_factor return np.float32(lr) # --- # 学习率策略函数 Learning rate policy functions # ---...
'WARM_UP_FACTOR': 0.3333333333333333, 'WARM_UP_ITERS': 500, 'WARM_UP_METHOD': 'linear', 'WEIGHT_DECAY': 0.0001, 'WEIGHT_DECAY_GN': 0.0}, 'TEST': {'BBOX_AUG': {'AREA_TH_HI': 32400, 'AREA_TH_LO': 2500, 'ASPECT_RATIOS': (), ...
SOLVER.WARM_UP_ITERS = 500 # 从 SOLVER.BASE_LR * SOLVER.WARM_UP_FACTOR 开始热身 __C.SOLVER.WARM_UP_FACTOR = 1.0 / 3.0 # WARM_UP_METHOD 方法可以是 'constant' 或'linear' (i.e., gradual) __C.SOLVER.WARM_UP_METHOD = 'linear' # 当更新学习率时,采用 new_lr / old_lr 对动量...
它的最终产品是一项与亚马逊Elastic MapReduce类似的服务,只不过不同之处在于它将利用EC2 GPU实例类型 ...
本文绝大部分内容参考(官方文档),用来自己记录使用。主要是用来查阅参考的。网络参数可以通过配置文件或者直接在代码里写入两种方式进行配置,一些公用的就写在代码里,需要调整的就卸载配置文件里,修改起来较为方便。 在阅读开源代码时可以参考此文档方便理解。(如FSOD的开源代码) ...