Find the derivative ofy=e2x View Solution Free Ncert Solutions English Medium NCERT Solutions NCERT Solutions for Class 12 English Medium NCERT Solutions for Class 11 English Medium NCERT Solutions for Class 10 English Medium NCERT Solutions for Class 9 English Medium ...
•|x|,abs(x)—absolute value •sqrt(x),root(x)—square root •exp(x)—e to the power of x •sgn(x)—sign function •y'—y′ •y'3—y′′′ •a+b—a+b •a-b—a−b •a*b—a⋅b •a/b—ba ...
推荐一个在线求导工具,只需要电脑能上网,有浏览器即可,使用上非常方便简单。 这个计算器可让您检查微积分练习的解决方案。通过向您展示求导的全部步骤(逐步展示求导过程的每个步骤),对进行求导练习很有帮助。 导数计算器支持计算一阶,二阶,…,五阶导数以及...
Derivative of tan x Derivative $f’$ of the function $f(x)=\tan x$ is: \(\forall x \neq \frac{\pi}{2}+k\pi, k \in \mathbb{Z}, f'(x) = 1+\tan ^{2} x\) Proof First we have: \((\tan x)' =\lim _{h \rightarrow 0} \dfrac{\tan (x+h) - \tan x }{h}\)...
Mar 2, 2025•Written byNadir SOUALEM Derivative f’ of function f(x)=arctan x is: f’(x) = 1 / (1 + x²) for all x real. To show this result, we use derivative of the inverse function tan x. Derivative of arctan x ...
(\frac{1}{x})^{(n)}=(-1)^n\frac{n!}{x^{n+1}} \quad\quad (n=1,2,...)(\ln x)^{(n)}=(-1)^{(n-1)}\frac{(n-1)!}{x^{n}} \quad\quad (n=2,3,...)(e^{x})^{(n)}=e^{x} (a^{x})^{(n)}=a^{x} \cdot \ln^n a \quad\quad a>0 ...
(In other words the derivative of x3is 3x2) So it is simply this: "multiply by power then reduce power by 1" It can also be used in cases like this: Example: What isddx(1/x) ? 1/x is alsox-1 We can use the Power Rule, where n = −1: ...
Find the derivative ofsec−1(12x2−1)w.r.t.√1−x2atx=12. View Solution Free Ncert Solutions English Medium NCERT Solutions NCERT Solutions for Class 12 English Medium NCERT Solutions for Class 11 English Medium NCERT Solutions for Class 10 English Medium ...
Derivatives of functions tableFunction nameFunctionDerivative f (x)f '(x) Constant const 0 Linear x 1 Power x a a x a-1 Exponential e x e x Exponential a x a x ln a Natural logarithm ln(x) Logarithm logb(x) Sine sin x cos x Cosine cos x -sin x Tangent tan x Arcsine arcsin...
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {e^{x}}^{e^{x + 1}}{x}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}{e^{x}}^{e^{x + 1}...