•csch(x)—hyperbolic cosecant •arsinh(x)—inverse hyperbolic sine •arcosh(x)—inverse hyperbolic cosine •artanh(x)—inverse hyperbolic tangent •arcoth(x)—inverse hyperbolic cotangent •sec(x)—secant •csc(x)—cosecant
Inverse Trigonometry sin-1(x) 1/√(1−x2) cos-1(x) −1/√(1−x2) tan-1(x) 1/(1+x2) RulesFunction Derivative Multiplication by constant cf cf’ Power Rule xn nxn−1 Sum Rule f + g f’ + g’ Difference Rule f − g f’ − g’ Product Rule fg f g’ + f...
As the name suggests, anti-derivative is the inverse process of differentiation. The derivative of cos x is -sin x and the derivative of sin x is cos x. So, the anti-derivative of cos x is sin x + C and the anti-derivative of sin x is -cos x + C, where C is constant of ...
Derivative $f’$ of function $f(x)=\arccos{x}$ is: \[\forall x \in ]–1, 1[ ,\quad f'(x) = -\frac{1}{\sqrt{1-x^2}}\] Proof Remember that function $\arcsin$ is the inverse function of $\cos$ : \[\left(f^{-1} \circ f\right)=\left(\cos \circ \arccos\right)(...
Thus: \(\begin{aligned} (\tan x)' &=\lim _{h \rightarrow 0} \frac{\tan (x+h) - \tan x }{h}\\ &=\lim _{h \rightarrow 0} \frac{\sin h}{h} \cdot \frac{1}{\cos h} \cdot \frac{1+\tan ^{2} x}{1-\tan x \tan h}\\ &=\left(\lim _{h \rightarrow 0} ...
输入表达式也可以直接以更自然的语言描述形式输入,比如输入: derivative of (x^3)cos(5x^2+e^(2x))-ln(3x^3-2x) 执行计算得到的结果一致...在以上两种输入的表达式后面加上where x=1,比如输入 derivative of (x^3)cos(5x^2+e^(2x))-ln(3x^3-2x) where x=1 image.png ?...其中derivative可以...
We give a geometric-trigonometric approach to obtain several identities involving inverse of the functions sin, cos and tan. This provides some new examples satisfying the zero derivative theorem.doi:10.1080/0020739X.2022.2128457Mehdi Hassanimehdi.hassani@znu.ac.ir...
cos x -sin x Tangent tan x Arcsine arcsin x Arccosine arccos x Arctangent arctan x Hyperbolic sine sinh x cosh x Hyperbolic cosine cosh x sinh x Hyperbolic tangent tanh x Inverse hyperbolic sine sinh-1 x Inverse hyperbolic cosine cosh-1 x Inverse hyperbolic tangent tanh-1 xDerivative...
4) the chain rule: Derivatives of common functions The polynomial or elementary power: The exponential function: The logarithmic function: The trigonometric functions: , , , The inverse trigonometric functions: , , , The hyperbolic functions:
limit as x approaches infinity of x^{2x}x→∞lim(x2x)derivative of cos(2x+sin(2pi))dxd(cos(2x)+sin(2π))integral from 1 to t of (25)/(x^3)∫1tx325dxderivative of cos(x+a)dxd(cos(x+a))inverse oflaplace 7/(s^5)inverse laplaces57 ...