GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
深度可分离卷积(Depthwise Separable Convolution)和分组卷积(Group Convolution)的理解,相互关系及PyTorch实现 1. 分组卷积(Group Convolution) 分组卷积最早出现在AlexNet中,如下图所示。在CNN发展初期,GPU资源不足以满足训练任务的要求,因此,Hinton采用了多GPU训练的策略,每个GPU完成一部分卷积,最后把多个GPU的卷积结果进...
Thank you for your splendid work. I really enjoyed your paper. But, I'm little bit confused about some parts. My questinons are below. What are you referring to by the term "Depthwise Separable Convolution"? Although you are using term "...
Depthwise卷积和Pointwise卷积构成了DepthwiseSeparableConvolution(Xception论文地址),该结构相比于常规卷积,其参数量和运算成本较低,常常出现在MobileNet等轻量级结构中。DepthwiseSeparableConvolution它将一个完成的卷积运算分成两步完成,即DW和PW。DepthwiseConvolution ...
深度可分离卷积(Depthwise Separable Convolution)和分组卷积(Group Convolution)的理解及PyTorch实现 1.1 分组卷积(Group Convolution)分组卷积最早出现在AlexNet中,如下图所示。在CNN发展初期,GPU资源不足以满足训练任务的要求,因此,Hinton采用了多GPU训练的策略,每个GPU完成一部分卷积… 小松鼠发表于数据挖掘 Conv1d 一维...
主要参考 【1】李宏毅:Network Compression 【2】尹国冰:卷积神经网络中的Separable Convolution Depthwise Separable Convolution是降低卷积运算参数量的一种典型方法。 包含两步,分别是Depthwise Convolution和Pointwise Convolution Depthwise Convolution filter的... ...
this has been mentioned quite a lot recently. mobilenet mobilenet does a better job on describing depthwise separable convolution. xception Please read the Prior Works section throughly. It describes how the depthwise seperable convoluti...
cnn lenet alexnet convolutional-neural-networks research-paper 2012 research-paper-explanation mobilenet mobilenets depthwiseseparableconvolution depthwiseconv2d depthwiseconvolution research-paper-implementation depthwise-separable-convolutions mobile-nets mobilenetv1 research-paper-summaries depthwise-convolutions ...
We adopt a depthwise separable CNN based on the implementation of MobileNet, the full implementation is available on my GitHub. Note that first layer is always regular convolution of the model, but the remaining layers are all depthwise separable convolutions. Implementation of the depthwise separable...
Depthwise separable convolutions reduce the number of parameters and computation used in convolutional operations while increasing representational efficiency. They have been shown to be successful in image classification models, both in obtaining better models than previously possible for a given parameter ...