稀疏矩阵:若数值为零的元素数目远远多于非0元素的数目时,则称该矩阵为稀疏矩阵 密集(稠密)矩阵:若非0元素数目占大多数时,则称该矩阵为密集矩阵 稀疏性:可以用一个得分来量化,就是矩阵种零值的个数除以矩阵种元素的总数。 比如:一个 3×6 的矩阵,共有18各元素,13个零值时,这个矩阵的得分是0.722或72%。
Dense and Sparse Matrix-Vector Multiplication on Maxwell GPUs with PyCUDAWe present a study on Matrix-Vector Product operations in the Maxwell GPU generation through the PyCUDA python library. Through this lens, a broad analysis is performed over different memory managemen...
词语相似性比较,最容易想到的就是编辑距离,也叫做Levenshtein Distance算法。在Python中是有现成的模块可...
稀疏矩阵Sparse Matrix是一种特殊的矩阵,其特点在于矩阵中数值为0的元素数目远远多于非0元素的数目,并且这些非0元素的分布没有规律。 简单地说,稀疏矩阵Sparse Matrix的行数和列数与其稀疏性没有直接的关系。稀疏矩阵Sparse Matrix的定义主要是基于矩阵Matrix中非零元素的数量与矩阵元素总数的比例。当这个比例小于或等于...
边还可以实现由dense到sparse的转换,也就是to_dense_adj的逆向过程。但是这里如果传入edge_attr,需要注意只能是一个值,而不能是带维度的。 但是需要注意的是,由dense_to_sparse转换得到的edge_index边,不是message passing处理时,常见的source to target的形式。即有序的index索引应该是作为target 节点的,而这里是...
NMatrix is a fast numerical linear algebra library for Ruby, with dense and sparse matrices, written mostly in C and C++ (and with experimental JRuby support). It is part of the SciRuby project. NMatrix was inspired byNArray, by Masahiro Tanaka. ...
I have a problem where I need to multiply a dense matrix by a sparse matrix. The function "mkl_?csrmm" asks for the first matrix to be sparse and the second to be dense. But my case is opposite. Problem: C = A * B + C , where A is dense and B is...
Example: >>> coo_matrix([[0]], dtype=np.float16).todense() Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/warren/local_scipy/lib/python2.7/site-packages/scipy/sparse/base.py", line 515, in todense return np.asmatrix(self.toarray(order=orde...
In a sparse matrix representation, the number of nonzero entries of the new A (on the left) may be less than, equal to, or greater than the number of nonzero entries of the old A (on the right). In fact, not even the size of the to-be-returned matrix is...
The practical limit for a Chinchilla optimally trained dense transformer with current hardware is between ~1 trillion and ~10 trillion parameters for compute costs. With future reports, we will discuss this band more for both dense vs. sparse models and the cost competitiveness of Google’s TPUv4...