DQN是一种深度增强学习算法,它采用神经网络来学习Q值函数。Q值函数是一个将状态和行动映射到Q值的函数,表示通过执行该行动在特定状态下获得的预期回报。这里的Q值函数是使用深度神经网络进行建模的,因此被称为Deep Q Networks,简称DQN。 Q值函数是一个将状态和行动映射到Q值的函数,表示通过执行该行动在特定状态下获得的预期回报
为此,深度Q网络(Deep Q-Network, DQN)引入了神经网络来逼近Q函数,并取得了显著的成果,如成功应用于Atari游戏。但DQN算法在实际应用中暴露出了一些问题,其中过估计偏差(Overestimation Bias)尤为突出。 2.1 过估计偏差问题 在DQN算法中,Q值更新公式如下: y_t^{DQN} = r_t + \gamma \max_a Q_{\theta^-}(...
首先,我们可以用一个 Q 网络而不使用目标网络来构建 DQN。在这种情况下,我们通过 Q 网络进行两次传递,首先输出Q Predict值[Q ( S t , A t ) Q(S_t, A_t)Q(St,At)],然后输出Q Target值[R T + 1 + γ m a x Q ( S t + 1 , a ) R_{T+1}+\gamma max Q(S_{t+1}, a...
为了解决 Q-Learning 的上述缺点,后来提出了 Deep Q-Learning 算法,其核心思想是使用神经网络代替 Q-function,给定一个状态,该神经网络将近似该状态下每个可能动作的Q-value,这样就避免了维护一个静态的Q-table了,内存的占用只和神经网络的参数量的大小有关。 一、初探 The Deep Q-Network (DQN) 1.1 The Deep...
Deep Q Learning Generalization Deep Reinforcement Learning 使用深度神经网络来表示 价值函数 策略 模型 使用随机梯度下降(SGD)优化loss函数 Deep Q-Networks(DQNs) 使用带权重集w\textbf{w}w的Q-network来表示状态-动作价值函数 Q^(s,a;w)≈Q(s,a)\hat{Q}(s,a;\textbf{w})\approx Q(s,a)Q^(...
但是当状态多到无法以表格或数组的形式表现时,最好的办法就是用一个参数化的Q函数去得到近似Q值。由于神经网络在复杂函数建模方面表现出色,我们可以使用神经网络(Deep Q-Networks)来估算 Q 函数。 DQN的基本原理与Q-learning算法非常相似。它从任意 Q 值估计开始,使用ε-greedy策略探索环境。其核心是在迭代更新中...
Deep Q-Networks (DQN):深度学习的融合 随着深度学习技术的发展,DQN应运而生,将神经网络引入Q-Learning框架,显著提升了学习效率和适应性。DQN通过一个深度神经网络预测Q值,从而能够处理更为复杂的环境状态,如高维图像输入。这种结合使得DQN能够在大规模、连续状态空间的问题上取得突破,比如在《雅达利》游戏集上...
2 DQN 算法更新 (Tensorflow) 要点 Deep Q Network 的简称叫 DQN, 是将 Q learning 的优势 和 Neural networks 结合了. 如果我们使用 tabular Q learning, 对于每一个 state, action 我们都需要存放在一张 q_table 的表中. 如果像显示生活中, 情况可就比那个迷宫的状况复杂多了, 我们有千千万万个 state,...
Deep Q Network 4.1 DQN 算法更新 4.2 DQN 神经网络 4.3 DQN 思维决策 4.4 OpenAI gym 环境库 Deep Q Network 的简称叫 DQN, 是将 Q learning 的优势 和 Neural networks 结合了. Notes Psudocode Deep Q-learning Algorithm This gives us the final deep Q-learning algorithm with experience replay: ...
Deep Q-Networks (DQN)时针对单个代理的,而我们可以通过一些细微的调整来制定多代理深度Q-Networks (MADQN)。 MADQN可以有3种不同的表述,即独立MADQN (iMADQN)、集中训练分散执行MADQN (CTDE MADQN)和集中训练和集中执行DQN (CTCE MADQN): iMADQN ...