2. Q-Learning:Q-Learning是一种无模型的强化学习算法,它通过学习一个状态-动作值函数(Q函数)来预测采取某个动作在某个状态下的期望回报。3. DQN的提出:在状态空间非常大或者连续的情况下,传统的Q-Learning方法难以应用,因为无法为每个状态-动作对存储Q值。DQN通过使用深度神经网络来近似Q函数,解决了这个问...
其中 maxQ_(S_{t+1},A;w) = Q_(S_{t+1},A_{t+1};w) ,意思是在下一个状态 S_{t+1} 下,采取能够使 Q_* 最大的动作 a_{t+1} 所带来的回报(DQN包含了很多个 Q(s,a;w) ,有多少个动作就有多少个 Q(s,a;w) )。 最优贝尔曼方程将当前状态的价值表达为当前即时奖励和未来状态的价值...
P = np.zeros((4,2,4))# 初始化 Q 矩阵Q = np.zeros((4,2))# 设定学习参数alpha =0.5gamma =0.95epsilon =0.1n_episodes =10000# 对每个情节进行循环for_inrange(n_episodes):# 初始化状态s = np.random.choice([0,1,2,3])# 对每个时间步进行循环,限制最大步数为 100,防止陷入无限循环for_i...
DQN(Deep Q Network)介绍 1.简介 Deep Q Network 属于强化学习。本文是从《Playing Atari with Deep Reinforcement Learning》翻译总结的。 本模型包括卷积神经网络、Q-learning。输入是像素图,输出是价值函数,评价未来收益。使用随机梯度下降方法。 从深度学习视角考虑,强化学习面临三方面的挑战,一是需要大量的人工...
深度Q网络(Deep Q-Network,DQN)是一种结合了深度学习和Q学习的强化学习算法,由DeepMind在2015年提出。 1. 算法介绍 DQN算法通过使用深度神经网络来近似Q值函数,解决了传统Q-learning在处理具有大量状态和动作的复杂问题时的局限性。在DQN中,神经网络的输入是环境的状态,输出是对应于各个可能动作的Q值。
2. Deep Q Network (DQN) 算法 当然了基于价值的深度强化学习不仅仅是把 Q Learning 中的价值函数用深度神经网络近似,还做了其他改进。 这个算法就是著名的 DQN 算法,由 DeepMind 在 2013 年在 NIPS 提出。DQN 算法的主要做法是 Experience Replay,其将系统探索环境得到的数据储存起来,然后随机采样样本更新深度神...
classDeepQNetwork:def__init__( self, n_actions, n_features, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9, replace_target_iter=300, memory_size=500, batch_size=32, e_greedy_increment=None, output_graph=True, ): self.n_actions=n_actions ...
在本教程中,我们将探讨强化学习的概念、Q-Learning、Deep Q-Learning与Deep Q-Network之间的关系。 02强化学习 强化学习(Reinforcement Learning,RL)是机器学习的一个子集,其中智能体通过与环境的交互来学习获取实现目标的最佳策略。与依赖于摄取和处理数据的监督式机器学习算法不同,强化学习不需要数据来学习。相反,智能...
[1]在2015年提出了在强化学习领域经典的算法Deep Q-Network (DQN) 。 整个算法用下面的算法流程图展示: DQN算法 DQN模型利用Function Appromimation 思想来逼近value function的函数,具体来说,采用深度学习的梯度下降来学习出近似的的value fuinction。
深度Q网络(Deep Q-Network,DQN)是一种结合了深度学习和Q学习的强化学习算法,由DeepMind在2015年提出。 1. 算法介绍 DQN算法通过使用深度神经网络来近似Q值函数,解决了传统Q-learning在处理具有大量状态和动作的复杂问题时的局限性。在DQN中,神经网络的输入是环境的状态,输出是对应于各个可能动作的Q值。