当然,我们还可以继续加上一些约束条件得到新的Deep Learning方法,如:如果在AutoEncoder的基础上加上L1的Regularity限制(L1主要是约束每一层中的节点中大部分都要为0,只有少数不为0,这就是Sparse名字的来源),我们就可以得到Sparse AutoEncoder法。 如上图,...
本节将简单介绍下sparse coding(稀疏编码),因为sparse coding也是deep learning中一个重要的分支,同样能够提取出数据集很好的特征。本文的内容是参考斯坦福deep learning教程:Sparse Coding,Sparse Coding: Autoencoder Interpretation,对应的中文教程见稀疏编码,稀疏编码自编码表达。 在次之前,我们需要对凸优化有些了解,百度...
本节将简单介绍下sparse coding(稀疏编码),因为sparse coding也是deep learning中一个重要的分支,同样能够提取出数据集很好的特征。本文的内容是参考斯坦福deep learning教程:Sparse Coding,Sparse Coding: Autoencoder Interpretation,对应的中文教程见稀疏编码,稀疏编码自编码表达。 在次之前,我们需要对凸优化有些了解,百度...
此时的求导涉及到了矩阵范数的求导,一般有2种方法,第一种是将求导问题转换到矩阵的迹的求导,可以参考前面博文Deep learning:二十七(Sparse coding中关于矩阵的范数求导)。第二种就是利用BP的思想来求,可以参考:Deep learning:二十八(使用BP算法思想求解Sparse coding中矩阵范数导数)一文。 代价函数关于权值矩阵A的导数...
由此可见,在前面博文Deep learning:二十六(Sparse coding简单理解)中,Ng教授给出关于Sparse coding的代价公式如下: 并且Ng教授称公式中比如第一项是l2范数,按照我现在这种定义其实这种讲法是错的,严格的说应该是Frobenius范数(不过也有可能是他自己的定义不同吧,反正最终能解决问题就行)。毕竟,在matlab中如果按照Ng关于...
这个算法就是深度学习Deep Learning。借助于 Deep Learning 算法,人类终于找到了如何处理“抽象概念”这个亘古难题的方法。 机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构市值不断改善自身的性能的学科,简单地说,机器学习就是通过算法,使得机器...
九、Deep Learning的常用模型或者方法 9.1、AutoEncoder自动编码器 9.2、Sparse Coding稀疏编码 9.3、Restricted Boltzmann Machine(RBM)限制波尔兹曼机 9.4、Deep BeliefNetworks深信度网络 9.5、Convolutional Neural Networks卷积神经网络 十、总结与展望 十一、参考文献和Deep Learning学习资源 ...
稀疏编码(Sparse Coding)。 稀疏编码是一个反复迭代的过程,每次迭代分两步: 1)选择一组 S[k],然后调整 a[k],使得Sum_k (a[k] * S[k]) 最接近 T。 2)固定住 a[k],在 400 个碎片中。选择其它更合适的碎片S’[k]。替代原先的 S[k]。使得Sum_k (a[k] * S’[k]) 最接近 T。 经过几次...
七、Deep learning与Neural Network 八、Deep learning训练过程 8.1、传统神经网络的训练方法 8.2、deep learning训练过程 九、Deep Learning的常用模型或者方法 9.1、AutoEncoder自动编码器 9.2、Sparse Coding稀疏编码 9.3、Restricted Boltzmann Machine(RBM)限制波尔兹曼机 ...
深度学习(Deep Learning, DL),由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。 深度学习被引入机器学习使其更接近于最初的目标---人工智能(AI,Artificial Intelligence)。 深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮...