图10 AlexNet参数量 4 Model Size 模型大小 Model Size = #Parameters\timesBit Width 例2:对于AlexNet网络,一共有61M个参数,假设所有参数都是以32位浮点数(FP32)保存,AlexNet的模型大小为61M × 4 Bytes (32 bits) = 244 MB 假设所有参数都是以8位整数(INT8)保存,AlexNet的模型大小为61M\times1Byte(8...
[ICLR2016 best paper]Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding [1602.07360] SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size 3线性量化:Integer-Arithmetic-Only Inference 线性量化可以将FP32的浮点数权重矩阵(wei...
model_size(int)- 整个网络的参数数量。 示例: importpaddle.fluidasfluid frompaddle.fluid.param_attrimportParamAttr frompaddleslim.analysisimportmodel_size defconv_layer(input, num_filters, filter_size, name, stride=1, groups=1, act=None): conv=fluid.layers.conv2d( input=input, num_filters=num...
Table 2. Core components of a CNN-based deep learning model. Empty CellHyperparametersInputOutputTypeFunction Convolution Layer Kernel size/strides/ padding 3D tensor 3D tensor 1D conv/2D conv/ 3D conv Extract features Pooling Layer Pool size/padding 3D tensor Reduced 3D tensor Max pooling/average...
Learn techniques for optimal model compression and optimization that reduce model size and enable them to run faster and more efficiently than before.
Learn how deep learning works and how to use deep learning to design smart systems in a variety of applications. Resources include videos, examples, and documentation.
Instead of creating a deep learning model from scratch, get a pretrained model, which you can apply directly or adapt to your task. MATLAB models ExploreMATLAB Deep Learning Model Hubto access the latest models by category and get tips on choosing a model. ...
1#声明定义好的线性回归模型2model =Regressor()3#开启模型训练模式4model.train()5#加载数据6training_data, test_data =load_data()7#定义优化算法,使用随机梯度下降SGD8#学习率设置为0.019opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters()) ...
BEIJING, May 5 (Xinhua) -- Chinese researchers have proposed a novel hybrid deep-learning model to address streamflow forecasting for water catchment areas at a global scale, with a view to improving flood prediction, according to a recent research article published in the journal The Innovation....
《Scientific Reports》:A deep learning model for prediction of lysine crotonylation sites by fusing multi-features based on multi-head self-attention mechanism 在生命活动的精密调控网络中,蛋白质翻译后修饰(PTM)如同分子世界的"密码锁",而赖氨酸巴豆酰化(Kcr)正是近年来破译的关键密码之一。这种在组蛋白和...