decoder cross-attention公式 Decoder Cross-Attention是指在Transformer等神经网络模型中,Decoder端使用了Encoder端的信息进行Attention操作,具体公式如下: 假设Decoder端的第i个位置的输入为$q_i$,Encoder端的第j个位置的输出为$k_j$,则Decoder Cross-Attention的计算公式为: 其中,$K$表示Encoder的所有输出,$V$表示...
Cross-Attention,即交叉注意力机制,是Transformer模型中的另一个重要组件。它在Decoder部分中发挥作用,允许模型在生成输出序列时,将注意力集中在输入序列中的相关部分。这有助于模型更好地理解和生成与输入序列相关的输出序列。 具体而言,Cross-Attention通过计算输入序列和输出序列之间的注意力权重来实现。这些权重表示了...
机器学习 写下你的评论... 打开知乎App 在「我的页」右上角打开扫一扫 其他扫码方式:微信 下载知乎App 开通机构号 无障碍模式 验证码登录 密码登录 中国+86 登录/注册 其他方式登录 未注册手机验证后自动登录,注册即代表同意《知乎协议》《隐私保护指引》...
"而Cross Attention模块Q、K是Encoder的输出"应该是encoder的K,V是encoder的输出吧,decoder侧作为Q,因为Q是带有mask的信息只是做一个权重作用,右下角那块是从起始符号一个个生成的,然而整个任务的主体应该是我们在encoder侧的输入,所以V肯定来自于左边encoder的结果,至于Q和K来自哪里:如果Q来自于encode,那么cross a...
("bert-base-cased", "bert-base-cased")and fine-tune the model. This means especially the decoder weights have to be adapted a lot, since in the EncoderDecoder framework the model has a causal mask and the cross attention layers are to be trained from scratch. The results so far are ...
Cross-modal image-recipe retrieval has gained significant attention in recent years. Most work focuses on improving cross-modal embeddings using unimodal encoders, that allow for efficient retrieval in large-scale databases, leaving aside cross-attention between modalities which is more computationally exp...
Wang, B., et al.: Inner attention based recurrent neural networks for answer selection, pp. 1288–1297 (2016). https://doi.org/10.18653/v1/p16-1122 Wang, M., et al.: What is the jeopardy model? A quasi-synchronous grammar for QA. In: Proceedings of the 2007 Joint Conference on Em...