在聚类分析问题中,如果数据集的各类呈球形分布,可以采用kmeans聚类算法,如果各类数据呈非球形分布(如太极图、笑脸图等),采用kmeans算法效果将大打折扣,这种情况可尝试使用DBSCAN聚类算法。 DBSCAN是英文单词Density-Based Spatial Clustering of Application with Noise的缩写,意为具有噪声的基于密度的聚类方法。单从字面...
K-means算法优点在于简单、快速,但其缺点也很明显。 (1)使用K-means算法就必须要求事前给出k值,也就是预先确定好想要把数据集分成几类。 (2)不同的初始化点,最后通过K-means得出的聚类结果也有可能产生差异。 (3)K-means对于“噪声点”是极其敏感的,可能极少的“噪声点”都会对最后的结果产生很大的影响。 02...
硬声是电子发烧友旗下广受电子工程师喜爱的短视频平台,推荐 机器学习经典算法:04_08_聚类算法_算法进阶_Kmeans与DBSCAN聚类比较_案例视频给您,在硬声你可以学习知识技能、随时展示自己的作品和产品、分享自己的经验或方案、与同行畅快交流,无论你是学生、工程师、原厂
K-means算法优点在于简单、快速,但其缺点也很明显。 (1)使用K-means算法就必须要求事前给出k值,也就是预先确定好想要把数据集分成几类。 (2)不同的初始化点,最后通过K-means得出的聚类结果也有可能产生差异。 (3)K-means对于“噪声点”是极其敏感的,可能极少的“噪声点”都会对最后的结果产生很大的影响。 02...