300 +Career Boosting courses 52 kLearners Enrolled in Tekslate Courses On-Job Support (Remote Work Support) TekslateRemote-Job Assist service The Tekslate On-Job Assist service is offered in partnership with Global Tech Community. The service provides Tech support for IT Professionals or Freshers...
Comments posted to this topic are about the item Can You Become a More... Boosting Data Accuracy: Resolving Common Data Quality Issues Using SQL By Ganesh Gopal Masti Jayaram Comments posted to this topic are about the item Boosting Data Accuracy: Resolving Common... Visit the forum...
SydneyandMelbourne)to find out how your business can tackle the complex challenges of database management throughout the entire DevOps lifecycle, no matter what database you’re using or where it’s located. Hear from industry experts as we share our experiences on boosting efficiency, reducing...
GigaCloud Technology Inc. is a pioneer of global end-to-end B2B ecommerce technology solutions for large parcel merchandise. The Company’s B2B ecommerce platform, the “GigaCloud Marketplace,” integrates everything from discovery, payments and l...
综合考虑消费金融数据所特有的非均衡、小数据、高维度等特点,尝试运用机器学习算法构建消费金融违约风险预测方法,并通过实验对比分析验证所提方法的准确性,比较来看,Logistic模型由于其鲁棒性、泛化能力更强,也与生产实际更贴近而成为首选模型,但从实际数据运行比较来看,基于boosting方法建立的Adaboost和XGboost模型表现更好...
boosting_type:提升类型,可以是gbdt(默认)、dart、goss等,分别表示传统提升树、Dropouts 与 GOSS(Gradient-based One-Side Sampling)。 lambda_l1和lambda_l2:L1 和 L2 正则化项的权重,分别用于控制模型复杂度。 2.3. 数据参数 num_leaves:叶子节点的数量,较高的值能够提高准确度,但也容易导致过拟合。通常推荐设...
品牌 BOOSTING/激扬 型号 小龟王5代灯具 色温K值 2800K 电动车小龟王灯具总成全套龟5车灯照明大灯前后转向灯后刹车尾灯 交易保障 买家保障 卖家承诺履约合规诈骗保赔,保障商品交易安全 价格说明 价格:商品在爱采购的展示标价,具体的成交价格可能因商品参加活动等情况发生变化,也可能随着购买数量不同或所选规格不...
对公营销、风控等BOSS直聘业务; 3、有信贷模型相关经验,如收入模型、信用申请欺诈模型、损耗模型、贷款回收模型以及一般信用评分模型; 4、熟悉常用数据挖掘、机器学习算法,如决策树、聚类、逻辑回归,关联分析、SVM,神经网络,boosting等; 5、有独立做客户画像、信用风险模型等实操经验 6、具备良好的团队合作精神,工作...
在机器学习中,LightGBM(Light Gradient Boosting Machine)是一个高效且强大的库,广泛应用于分类、回归等任务。而在 LightGBM 中,LGBMClassifier 是用于二分类问题的主要工具。尤其是对初学者来说,了解如何设置模型的重要参数是至关重要的。本篇文章将带领你从零开始,完全掌握如何使用 LGBMClassifier,并了解其中的重要参数...
When it comes to databases, I often find people considering the same set of options for boosting performance (usually in this order): half-heartedly tuning the database, adding more DRAM, *properly* tuning the database, adding or upgrading CPUs, then finally tuning the application. It amazes...