DB-GPT-Hub是一个利用LLMs实现Text-to-SQL解析的实验项目,主要包含数据集收集、数据预处理、模型选择与构建和微调权重等步骤,通过这一系列的处理可以在提高Text-to-SQL能力的同时降低模型训练成本,让更多的开发者参与到Text-to-SQL的准确度提升工作当中,最终实现基于数据库的自动问答能力,让用户可以通过自然语言描述...
图1.DB-GPT-Hub 的架构流程图 如图一所示:DB-GPT-Hub 项目重点关注在数据预处理 - 数据集构建 - 模型微调 - 模型预测 - 模型验证部分,微调得到的模型可以无缝衔接部署到 DB-GPT 框架中,然后结合知识问答和数据分析等能力展示模型在 Text2SQL 领域的优越性能。
为了充分利用大语言模型(Large Language Model,简写为 LLM)的语言理解能力,提高 Text2SQL 的模型微调效率和模型精度,在 DB-GPT 框架下提出了一个端到端大模型 Text2SQL 微调子框架 DB-GPT-Hub。在 DB-GPT 框架下,构架了 Text2SQL 领域下的数据预处理 - 模型微调 - 模型预测 - 模型验证 - 模型评估的...
DB-GPT-Hub:text2sql的微调框架及基准测试套件 text2sql任务是将自然语言问题转换为SQL查询。使用大模型来进行 sql 生成的方式也越来越常见。根据大模型用于文本到SQL生成的方式,text2sql可以分为两种场景:零样本/少样本提示和微调。 尽管少样本提示的大模型取得了显著进展,但仅依靠其参数知识和提示来准确处理高度...
DB-GPT-Hub使用的是信息匹配生成法进行数据准备,即结合表信息的 SQL + Repository 生成方式,这种方式结合了数据表信息,能够更好地理解数据表的结构和关系,适用于生成符合需求的 SQL 语句。 从spider数据集链接 下载spider数据集,默认将数据下载解压后,放在目录dbgpt_hub/data下面,即路径为dbgpt_hub/data/spider。
图1.DB-GPT-Hub 的架构流程图 如图一所示:DB-GPT-Hub 项目重点关注在数据预处理 - 数据集构建 - 模型微调 - 模型预测 - 模型验证部分,微调得到的模型可以无缝衔接部署到 DB-GPT 框架中,然后结合知识问答和数据分析等能力展示模型在 Text2SQL 领域的优越性能。
图1.DB-GPT-Hub 的架构流程图 如图一所示:DB-GPT-Hub 项目重点关注在数据预处理 - 数据集构建 - 模型微调 - 模型预测 - 模型验证部分,微调得到的模型可以无缝衔接部署到 DB-GPT 框架中,然后结合知识问答和数据分析等能力展示模型在 Text2SQL 领域的优越性能。
DB-GPT-Hub是一个利用LLMs实现Text-to-SQL解析的实验项目,主要包含数据集收集、数据预处理、模型选择与构建和微调权重等步骤,通过这一系列的处理可以在提高Text-to-SQL能力的同时降低模型训练成本,让更多的开发者参与到Text-to-SQL的准确度提升工作当中,最终实现基于数据库的自动问答能力,让用户可以通过自然语言描述...
DB-GPT 框架下提出了一个端到端大模型 Text2SQL 微调子框架 DB-GPT-Hub。在 DB-GPT 框架下,构架了 Text2SQL 领域下的数据预处理 - 模型微调 - 模型预测 - 模型验证 - 模型评估的全链路工作流程,如下图所示: DB-GPT-Hub 的架构流程图 代码库设计 数据集构建:将原始文本到SQL数据加工成适合微调LLM的格式...
1.DB-GPT-Hub简介 Text-to-SQL(简写为 Text2SQL,或者 NL2SQL)是一项将自然语言描述转化为对应的结构化查询语句(Structured Query Language, 简写为 SQL)的技术,它能利用简洁清晰的自然语言描述,有效地辅助人们对海量的数据库进行查询,简化数据查询和分析的工作。随着生成式人工智能(Artificial Intelligence Generated ...